
Hands-on	exercise	5:	Adding	a	service	demand	by	correlation
In	the	previous	tutorial	we	added	an	exogenous	service	demand.	That	is,	we	explicitly	specified	what	the	demand	would	be	per	year.	However,	we	may	not
know	what	the	electricity	demand	may	be	per	year.	Instead,	we	may	conclude	that	our	electricity	demand	is	a	function	of	the	GDP	and	population	of	a
particular	region.	To	accommodate	such	a	scenario,	MUSE	enables	us	to	choose	a	regression	function	that	estimates	service	demands	from	GDP	and
population,	which	may	be	more	certain	in	your	case.	In	this	section	we	will	show	how	this	can	be	done.

This	tutorial	will	build	off	the	default	model	that	comes	with	MUSE.	To	copy	the	files	for	this	model,	run:

python	-m	muse	--model	default	--copy	PATH/TO/COPY/THE/MODEL/TO

Additional	files

Similarly	to	before,	we	must	amend	the	 technodata/preset 	folder.	As	we	are	no	longer	explicitly	specifying	demand,	we	can	delete	the	
Residential2020Consumption.csv 	and	 Residential2050Consumption.csv 	files.	Instead,	we	must	replace	these	files	with	the	following:

A	macrodrivers	file:	This	contains	the	drivers	of	the	service	demand	that	we	want	to	model.	For	this	example,	these	will	include	GDP	based	on
purchasing	power	parity	(GDP	PPP)	and	the	population	that	we	expect	from	2010	to	2110.
A	regression	parameters	file:	This	file	will	set	the	function	type	we	would	like	to	use	to	predict	the	service	demand	and	the	respective	parameters	of
this	regression	file	per	region.
A	timeslice	share	file:	This	file	sets	how	the	demand	is	shared	between	timeslice.

The	example	files	for	each	of	those	just	mentioned	can	be	found	below,	respectively:

Macrodrivers.csv	(https://github.com/EnergySystemsModellingLab/MUSE_OS/blob/v1.3.3/docs/tutorial-code/6-add-correlation-demand/1-
correlation/technodata/preset/Macrodrivers.csv)
regressionparameters.csv	(https://github.com/EnergySystemsModellingLab/MUSE_OS/blob/v1.3.3/docs/tutorial-code/6-add-correlation-demand/1-
correlation/technodata/preset/regressionparameters.csv)
TimesliceSharepreset.csv	(https://github.com/EnergySystemsModellingLab/MUSE_OS/blob/v1.3.3/docs/tutorial-code/6-add-correlation-demand/1-
correlation/technodata/preset/TimesliceSharepreset.csv)

For	a	full	description	of	these	files,	see	the	link	here	(https://muse-os.readthedocs.io/en/v1.3.3/user-guide/../inputs/correlation_files.html).

Download	these	files	and	save	them	within	the	 preset 	folder.

Next,	we	must	amend	our	toml	file	to	link	to	these	files.

TOML	file

Towards	the	bottom	of	the	toml	file,	you	will	see	the	following	section:

[sectors.residential_presets]
type	=	'presets'
priority	=	0
consumption_path=	"{path}/technodata/preset/*Consumption.csv"

This	enables	us	to	run	the	model	in	exogenous	mode	(i.e.	explicitly	specifying	demand),	but	now	we	would	like	to	run	the	model	using	the	new	regression
files.	This	can	be	done	by	linking	new	variables	to	the	new	files,	as	follows:

[sectors.residential_presets]
type	=	'presets'
priority	=	0
timeslice_shares_path	=	'{path}/technodata/preset/TimesliceSharepreset.csv'
macrodrivers_path	=	'{path}/technodata/preset/Macrodrivers.csv'
regression_path	=	'{path}/technodata/preset/regressionparameters.csv'

Running	and	visualising	our	new	results

With	those	changes	made,	we	are	now	able	to	run	our	modified	model,	with	the	 python	-m	muse	settings.toml 	command	in	the	command	line,	as
before.

As	before,	we	will	now	visualise	the	output.

https://github.com/EnergySystemsModellingLab/MUSE_OS/blob/v1.3.3/docs/tutorial-code/6-add-correlation-demand/1-correlation/technodata/preset/Macrodrivers.csv
https://github.com/EnergySystemsModellingLab/MUSE_OS/blob/v1.3.3/docs/tutorial-code/6-add-correlation-demand/1-correlation/technodata/preset/regressionparameters.csv
https://github.com/EnergySystemsModellingLab/MUSE_OS/blob/v1.3.3/docs/tutorial-code/6-add-correlation-demand/1-correlation/technodata/preset/TimesliceSharepreset.csv
https://muse-os.readthedocs.io/en/v1.3.3/inputs/correlation_files.html


In	[1]:

import	matplotlib.pyplot	as	plt
import	pandas	as	pd

In	[2]:

mca_capacity	=	pd.read_csv(
				"../tutorial-code/add-correlation-demand/1-correlation/Results/MCACapacity.csv"
)
mca_capacity.head()

In	[3]:

fig,	axes	=	plt.subplots(1,	3)
all_years	=	mca_capacity["year"].unique()
for	ax,	(sector_name,	sector_data)	in	zip(axes,	mca_capacity.groupby("sector")):
				sector_capacity	=	sector_data.groupby(["year",	"technology"]).sum().reset_index()
				sector_capacity.pivot(
								index="year",	columns="technology",	values="capacity"
				).reindex(all_years).plot(kind="bar",	stacked=True,	ax=ax)
				ax.set_ylabel("Capacity	(PJ)")
				ax.set_xlabel("Year")
				ax.set_title(f"{sector_name.capitalize()}	Sector:",	fontsize=10)
				ax.legend(title=None,	prop={"size":	8})
				ax.tick_params(axis="both",	labelsize=8)

fig.set_size_inches(8,	2.5)
fig.subplots_adjust(wspace=0.5)

As	expected,	we	see	a	different	scenario	emerge.	The	demand	does	not	increase	linearly,	with	variations	in	the	total	demand	in	the	residential	sector,	in
line	with	the	changing	population	data.

Out[2]:

agent capacity dst_region installed region sector technology type year

0 A1 10.0000 R1 2020 R1 residential gasboiler newcapa 2020

1 A1 1.0000 R1 2020 R1 power gasCCGT newcapa 2020

2 A1 15.0000 R1 2020 R1 gas gassupply1 newcapa 2020

3 A1 5.0000 R1 2020 R1 residential gasboiler newcapa 2025

4 A1 11.8632 R1 2025 R1 residential heatpump newcapa 2025


