Hands-on exercise 5: Adding a service demand by correlation

In the previous tutorial we added an exogenous service demand. That is, we explicitly specified what the demand would be per year. However, we may not
know what the electricity demand may be per year. Instead, we may conclude that our electricity demand is a function of the GDP and population of a
particular region. To accommodate such a scenario, MUSE enables us to choose a regression function that estimates service demands from GDP and
population, which may be more certain in your case. In this section we will show how this can be done.

This tutorial will build off the default model that comes with MUSE. To copy the files for this model, run:

python -m muse --model default --copy PATH/TO/COPY/THE/MODEL/TO

Additional files

Similarly to before, we must amend the residential presets folder. As we are no longer explicitly specifying demand, we can delete the
Residential2020Consumption.csv and Residential2050Consumption.csv files. Instead, we must replace these files with the following:

o A macrodrivers file: This contains the drivers of the service demand that we want to model. For this example, these will include GDP based on

purchasing power parity (GDP PPP) and the population that we expect from 2010 to 2110.
* A regression parameters file: This file will set the function type we would like to use to predict the service demand and the respective parameters of

this regression file per region.
o A timeslice share file: This file sets how the demand is shared between timeslice.

The example files for each of those just mentioned can be found below, respectively:

e Macrodrivers.csv (https://github.com/EnergySystemsModellingLab/MUSE_OS/blob/v1.5.1/docs/tutorial-code/add-correlation-demand/1-

correlation/residential_presets/Macrodrivers.csv)
e regressionparameters.csv (https://github.com/EnergySystemsModellingLab/MUSE_OS/blob/v1.5.1/docs/tutorial-code/add-correlation-demand/1-

correlation/residential_presets/regressionparameters.csv)
o TimesliceSharepreset.csv (https://github.com/EnergySystemsModellingLab/MUSE_OS/blob/v1.5.1/docs/tutorial-code/add-correlation-demand/1-

correlation/residential_presets/TimesliceSharepreset.csv)

For a full description of these files, see the link here (https://muse-os.readthedocs.io/en/v1.5.1/user-guide/../inputs/correlation_files.html).

Download these files and save them within the preset folder.

Next, we must amend our toml file to link to these files.

TOML file

Towards the bottom of the toml file, you will see the following section:

[sectors.residential_presets]

type = 'presets’

priority = 0

consumption path= "{path}/residential presets/*Consumption.csv"

This enables us to run the model in exogenous mode (i.e. explicitly specifying demand), but now we would like to run the model using the new regression
files. This can be done by linking new variables to the new files, as follows:

[sectors.residential_presets]
type = 'presets'’

priority = 0

timeslice shares path = '{path}/residential presets/TimesliceSharepreset.csv'
macrodrivers path = '{path}/residential presets/Macrodrivers.csv'

regression path = '{path}/residential presets/regressionparameters.csv'

Running and visualising our new results

With those changes made, we are now able to run our modified model, with the python -m muse settings.toml command in the command line, as

before.

As before, we will now visualise the output.

https://github.com/EnergySystemsModellingLab/MUSE_OS/blob/v1.5.1/docs/tutorial-code/add-correlation-demand/1-correlation/residential_presets/Macrodrivers.csv
https://github.com/EnergySystemsModellingLab/MUSE_OS/blob/v1.5.1/docs/tutorial-code/add-correlation-demand/1-correlation/residential_presets/regressionparameters.csv
https://github.com/EnergySystemsModellingLab/MUSE_OS/blob/v1.5.1/docs/tutorial-code/add-correlation-demand/1-correlation/residential_presets/TimesliceSharepreset.csv
https://muse-os.readthedocs.io/en/v1.5.1/inputs/correlation_files.html

In [1]:

import matplotlib.pyplot as plt
import pandas as pd

In [2]:

mca_capacity = pd.read csv(
"../tutorial-code/add-correlation-demand/1-correlation/Results/MCACapacity.csv"
)

mca_capacity.head()

OQut[2]:
agent capacity dst_region installed region sector technology type year
0 A1 10.0000 r1 2020 r1 residential gasboiler newcapa 2020
1 A1l 1.0000 r1 2020 r1 power gasCCGT newcapa 2020
2 A1 15.0000 r1 2020 r1 gas gassupplyl newcapa 2020
3 A1 5.0000 r1 2020 r1 residential gasboiler newcapa 2025
4 A1 4.2695 r1 2025 r1 residential gasboiler newcapa 2025

In [3]:

fig, axes = plt.subplots(1l, 3)
all years = mca capacity["year"].unique()
for ax, (sector name, sector data) in zip(axes, mca capacity.groupby("sector")):
sector capacity = sector data.groupby(["year", "technology"]).sum().reset index()
sector capacity.pivot(
index="year", columns="technology", values="capacity"
) .reindex(all years).plot(kind="bar", stacked=True, ax=ax)
ax.set ylabel("Capacity (PJ)")
ax.set xlabel("Year")
ax.set title(f"{sector name.capitalize()} Sector:", fontsize=10)
ax.legend(title=None, prop={"size": 8})
ax.tick params(axis="both", labelsize=8)

fig.set size inches(8, 2.5)
fig.subplots adjust(wspace=0.5)

Gas Sector: Power Sector: Residential Sector:
20
17.5 4 B gassupplyl 150 4 B gasCCGT Il gasboiler
15 0 4 ’ e windturbine B heatpump
. 1251 15 4
o 12.5 4 o o
2 10,0 4 ey
2 10.0 Fry z
i T o 101
1] 7.5 1] L (1]
a - o o
1] 1] i 1]
Y 50 O 50 L
25 2.5 1
oo - 0.0 - o-
[=] oo N (=TT (=] [=] u [=] [T5] =T ¥y N] (=TT [=] [T5] [=] [Tx] (=]
™ ™ m m =t =+ wu ™ ™ m m =+ = ul ™~ ™~ m m = = i
o o o 9o o 9o o 2 9 0 9 9 9 9 Q2 0O 9 o o g 9
™ ™ ™~ ™~ ™~ ™~ ™ ™ ™~ (&' ™~ ™ ™~ ™~ ™~ ™~ ™~ ™~ ™~ ™ ™
Year Year Year

As expected, we see a different scenario emerge. The demand does not increase linearly, with variations in the total demand in the residential sector, in
line with the changing population data.

