
Hands-on	exercise	8:	Modifying	the	time	framework
In	this	section	we	will	show	you	how	to	modify	the	timeslicing	arrangement	as	well	as	change	the	time	horizon	and	benchmark	year	intervals	by	modifying
the	 settings.toml 	file.

This	tutorial	will	build	off	the	default	model	that	comes	with	MUSE.	To	copy	the	files	for	this	model,	run:

python	-m	muse	--model	default	--copy	PATH/TO/COPY/THE/MODEL/TO

Modify	timeslicing

Timeslicing	is	the	division	of	a	single	benchmark	year	into	multiple	different	sections.	For	example,	we	could	slice	the	benchmark	year	into	different
seasons,	make	a	distinction	between	weekday	and	weekend	or	a	distinction	between	morning	and	night.	We	do	this	as	energy	demand	profiles	can	show
a	difference	between	these	timeslices	(eg.	electricity	consumption	is	lower	during	the	night	than	during	the	day).

To	achieve	this,	we	have	to	modify	the	 settings.toml 	file,	as	well	as	the	files	within	the	preset	folder:	 Residential2020Consumption.csv 	and	
Residential2050Consumption.csv .	This	is	so	that	we	can	edit	the	demand	for	the	residential	sector	for	the	new	timeslices.

First	we	edit	the	 settings.toml 	file	to	add	two	additional	timeslices:	early-morning	and	late-afternoon.	We	also	rename	afternoon	to	mid-afternoon.
These	settings	can	be	found	at	the	bottom	of	the	 settings.toml 	file.

An	example	of	the	changes	is	shown	below:

[timeslices.all-year.all-week]
night	=	1095
morning	=	1095
mid-afternoon	=	1095
early-peak	=	1095
late-peak	=	1095
evening	=	1095
early-morning	=	1095
late-afternoon	=	1095

The	total	length	of	the	timeslices	should	add	up	to	8760;	the	number	of	hours	in	a	benchmark	year.	Whilst	this	is	required,	MUSE	does	not	check	and
enforce	this.

Next,	we	modify	both	Residential	Consumption	files.	Again,	we	put	the	text	in	bold	for	the	modified	entries.	We	must	add	the	demand	for	the	two	additional
timeslices,	which	are	numbers	7	and	8.	We	will	also	change	the	demand	for	 heat 	in	the	existing	timeslices.

Below	is	the	modified	 Residential2020Consumption.csv 	file:

region timeslice heat

R1 1 0.7

R1 2 1.0

R1 3 0.7

R1 4 1.0

R1 5 2.1

R1 6 1.4

R1 7 1.4

R1 8 1.4

We	do	the	same	for	the	 Residential2050Consumption.csv ,	but	set	the	demand	in	2050	to	be	triple	that	of	2020	in	every	timeslice.	See	here
(https://github.com/EnergySystemsModellingLab/MUSE_OS/blob/v1.5.1/docs/tutorial-code/modify-timing-data/1-modify-
timeslices/residential_presets/Residential2050Consumption.csv)	for	the	full	file.

Once	the	relevant	files	have	been	edited,	we	are	able	to	run	the	simulation	model	using	 python	-m	muse	settings.toml .

Then,	once	run,	we	import	the	necessary	packages:

In	[1]:

import	matplotlib.pyplot	as	plt
import	pandas	as	pd

and	visualise	the	relevant	data:

https://github.com/EnergySystemsModellingLab/MUSE_OS/blob/v1.5.1/docs/tutorial-code/modify-timing-data/1-modify-timeslices/residential_presets/Residential2050Consumption.csv


In	[2]:

mca_capacity	=	pd.read_csv(
				"../tutorial-code/modify-timing-data/1-modify-timeslices/Results/MCACapacity.csv"
)

fig,	axes	=	plt.subplots(1,	3)
all_years	=	mca_capacity["year"].unique()
for	ax,	(sector_name,	sector_data)	in	zip(axes,	mca_capacity.groupby("sector")):
				sector_capacity	=	sector_data.groupby(["year",	"technology"]).sum().reset_index()
				sector_capacity.pivot(
								index="year",	columns="technology",	values="capacity"
				).reindex(all_years).plot(kind="bar",	stacked=True,	ax=ax)
				ax.set_ylabel("Capacity	(PJ)")
				ax.set_xlabel("Year")
				ax.set_title(f"{sector_name.capitalize()}	Sector:",	fontsize=10)
				ax.legend(title=None,	prop={"size":	8})
				ax.tick_params(axis="both",	labelsize=8)

fig.set_size_inches(8,	2.5)
fig.subplots_adjust(wspace=0.5)

Modify	time	horizon	and	time	periods

For	the	previous	examples,	we	have	run	the	scenario	from	2020	to	2050,	in	5	year	time	steps	per	benchmark	year.	However,	we	may	want	to	run	a	more
detailed	scenario,	with	2	year	time	steps,	and	up	until	the	year	2040.

We	will	make	this	change	by	modifying	the	current	model.	Firstly,	we	need	to	change	the	time	framework	defined	in	 settings.toml 	file,	as	follows:

time_framework	=	[2020,	2022,	2024,	2026,	2028,	2030,	2032,	2034,	2036,	2038,	2040]

After	making	these	changes,	we	can	re-run	the	model	and	visualise	the	results:



In	[3]:

mca_capacity	=	pd.read_csv(
				"../tutorial-code/modify-timing-data/2-modify-time-framework/Results/MCACapacity.csv"
)

fig,	axes	=	plt.subplots(1,	3)
all_years	=	mca_capacity["year"].unique()
for	ax,	(sector_name,	sector_data)	in	zip(axes,	mca_capacity.groupby("sector")):
				sector_capacity	=	sector_data.groupby(["year",	"technology"]).sum().reset_index()
				sector_capacity.pivot(
								index="year",	columns="technology",	values="capacity"
				).reindex(all_years).plot(kind="bar",	stacked=True,	ax=ax)
				ax.set_ylabel("Capacity	(PJ)")
				ax.set_xlabel("Year")
				ax.set_title(f"{sector_name.capitalize()}	Sector:",	fontsize=10)
				ax.legend(title=None,	prop={"size":	8})
				ax.tick_params(axis="both",	labelsize=8)

fig.set_size_inches(8,	2.5)
fig.subplots_adjust(wspace=0.5)

Summary
As	we	add	more	timeslices	or	years,	the	model	takes	longer	to	run,	but	slightly	different	scenarios	emerge.	This	highlights	the	trade-off	between	time
granularity	and	speed	of	computation.	It	is	up	to	you	to	decide	what	level	of	granularity	is	required	for	your	use	case.


