Hands-on exercise 9: Production constraints by timeslice

In some sectors it may be the case that a technology can only output a certain amount at a certain time. For instance, solar photovoltaics (PV) don't
produce power in the dark, and thus their output is limited at night.

In this section, we explain how to add constraints to outputs of technologies at certain timeslices. This could either be a maximum constraint, for instance
with the solar PV example previously mentioned. Or, this could be a minimum constraint, for example with a nuclear power plant, where we expect a
minimum output at all times.

Minimum timeslice constraint

In this tutorial we will be amending the default timeslice example.

To copy this model so you can edit the files, run:
python -m muse --model default timeslice --copy PATH/T0/COPY/THE/MODEL/TO

You will see that, compared to the default example, this model has an additional TechnodataTimeslices.csv fileinthe power sector The
majority of the columns in this file are self-explanatory, and correspond to the columns in other csv files - for instance, technology , region and
year . The utilization factor column specifies the maximum utilization factor for the respective technologies in the respective timeslices, and the
mimimum_service factor specifies the minimum service factor of a technology. The timeslice based columns, however, are dynamic and will match
the levels as defined in the toml file.

We will modify the minimum service factor for gasCCGT inthe power sector as follows.

technology region year month day hour utilization_factor minimum_service_factor
gasCCGT R1 2020 all-year all-week night 1 0.2
gasCCGT R1 2020 all-year all-week morning 1 0.4
gasCCGT R1 2020 all-year all-week afternoon 1 0.6
gasCCGT R1 2020 all-year all-week early-peak 1 0.4
gasCCGT R1 2020 all-year all-week late-peak 1 0.8
gasCCGT R1 2020 all-year all-week evening 1 1

For example, if the capacity of gasCCGT in a given year is 1, and the minimum service factor in a timeslice is 0.5, then the minimum output in that
timeslice will be capped at 0.083 (= (1/6) * 0.5), assuming there are 6 timeslices with equal length.

Looking atthe settings.toml file, you should see that the file has already been linked to the appropriate sector:

[sectors.power]

type = 'default'

priority = 2

technodata = '{path}/power/Technodata.csv'

commodities in = '{path}/power/CommIn.csv'

commodities out = '{path}/power/CommOut.csv'

technodata timeslices = '{path}/power/TechnodataTimeslices.csv'

Notice the technodata timeslices path in the bottom row.

The default timeslice model also includes one additional output, which gives a detailed breakdown of commodity supply in the power sector:

[[sectors.power.outputs]]

filename = "{cwd}/{default output dir}/{Sector} {Quantity}.csv"
sink = "aggregate"

quantity = "supply"

This will create a new file in the results folder called Power Supply.csv , which will be important for the analysis below.

Once you've had a look at these files, run MUSE with the usual command:
python -m muse settings.toml

We will then visualise the output of the technologies in each timeslice:

In [1]:
from pathlib import Path

import numpy as np
import pandas as pd
import seaborn as sns

In [2]:

def plot supply(supply, capacity, technology, commodity, year, factor=None):
Plot timeslice supply
tech supply = (
supply[
(supply.technology == technology)
& (supply.commodity == commodity)
& (supply.year == year)
]
.groupby(["timeslice", "technology"])
.sum()
.reset _index()

)

ax = sns.barplot(
data=tech supply,
x="timeslice",
y="supply",
hue="technology",
)
ax.set title(f"{commodity} supply from {technology} in {year}")

Add line for the expected minimum/maximum supply
if factor is not None:
tech capa = capacityl[
(capacity.technology == technology) & (capacity.year == year)
].capacity.sum()
min supply = (tech capa / 6) * factor
ax.plot(min supply, color="red")

path = Path("../tutorial-code/min-max-timeslice-constraints/1l-min-constraint/Results/")
supply = pd.read csv(path / "Power Supply.csv")
capacity = pd.read csv(path / "MCACapacity.csv")

plot supply(
supply,
capacity,
"gasCCGT",
"electricity",
2025,
np.array([0.2, 0.4, 0.6, 0.4, 0.8, 1]),

electricity supply from gasCCGT in 2025

technology
N gasCCGT

0.16

0.14

0.12

0.10

supply

0.08

0.06

0.04

0.02

timeslice

Here, we can see that the supply of electricity by gasCCGT in 2025 successfully exceeds the lower-bound cap (red line) in every timeslice.

Maximum timeslice constraint

Next, we will try removing the minimum constraint for the last two timeslices and instead imposing a maximum constraint using the UtilizationFactor
parameter

technology region year month day hour utilization_factor minimum_service_factor
gasCCGT R1 2020 all-year all-week night 1 0.2
gasCCGT R1 2020 all-year all-week morning 1 0.4
gasCCGT R1 2020 all-year all-week afternoon 1 0.6
gasCCGT R1 2020 all-year all-week early-peak 1 0.4
gasCCGT R1 2020 all-year all-week late-peak 0.5 0
gasCCGT R1 2020 all-year all-week evening 0.5 0

Once this has been saved, we can run the model again (python -m muse settings.toml), and visualise our results as before.

In [3]:

path = Path("../tutorial-code/min-max-timeslice-constraints/2-max-constraint/Results/")
supply = pd.read csv(path / "Power Supply.csv")
capacity = pd.read csv(path / "MCACapacity.csv")

plot supply(
supply,
capacity,
"gasCCGT",
"electricity",
2025,
np.array([1, 1, 1, 1, 0.5, 0.5]),

electricity supply from gasCCGT in 2025

technology
0:16:7 B gasCCGT
0.14
0.12
0.10 -
)
a
(=N
7 0.08

0.06

0.04

0.02

timeslice

As expected, we can see an enforced reduction in supply in the final two timeslices, compared to the previous scenario.

Summary

In this tutorial we've shown had to impose minimum and maximum constraints on the activity of technologies on a timeslice-basis. Not only will this impact
the supply of comodities, but it may also influence investment decisions. You are encouraged to explore the implications of this on your own.

