
Hands-on	exercise	9:	Production	constraints	by	timeslice
In	some	sectors	it	may	be	the	case	that	a	technology	can	only	output	a	certain	amount	at	a	certain	time.	For	instance,	solar	photovoltaics	(PV)	don't
produce	power	in	the	dark,	and	thus	their	output	is	limited	at	night.

In	this	section,	we	explain	how	to	add	constraints	to	outputs	of	technologies	at	certain	timeslices.	This	could	either	be	a	maximum	constraint,	for	instance
with	the	solar	PV	example	previously	mentioned.	Or,	this	could	be	a	minimum	constraint,	for	example	with	a	nuclear	power	plant,	where	we	expect	a
minimum	output	at	all	times.

Minimum	timeslice	constraint
In	this	tutorial	we	will	be	amending	the	 default_timeslice 	example.

To	copy	this	model	so	you	can	edit	the	files,	run:

python	-m	muse	--model	default_timeslice	--copy	PATH/TO/COPY/THE/MODEL/TO

You	will	see	that,	compared	to	the	 default 	example,	this	model	has	an	additional	 TechnodataTimeslices.csv 	file	in	the	 power 	sector	The
majority	of	the	columns	in	this	file	are	self-explanatory,	and	correspond	to	the	columns	in	other	 csv 	files	-	for	instance,	 technology ,	 region 	and	
year .	The	 utilization_factor 	column	specifies	the	maximum	utilization	factor	for	the	respective	technologies	in	the	respective	timeslices,	and	the
mimimum_service_factor 	specifies	the	minimum	service	factor	of	a	technology.	The	timeslice	based	columns,	however,	are	dynamic	and	will	match
the	levels	as	defined	in	the	 toml 	file.

We	will	modify	the	minimum	service	factor	for	 gasCCGT 	in	the	 power 	sector	as	follows.

technology region year month day hour utilization_factor minimum_service_factor

gasCCGT R1 2020 all-year all-week night 1 0.2

gasCCGT R1 2020 all-year all-week morning 1 0.4

gasCCGT R1 2020 all-year all-week afternoon 1 0.6

gasCCGT R1 2020 all-year all-week early-peak 1 0.4

gasCCGT R1 2020 all-year all-week late-peak 1 0.8

gasCCGT R1 2020 all-year all-week evening 1 1

For	example,	if	the	capacity	of	 gasCCGT 	in	a	given	year	is	1,	and	the	minimum	service	factor	in	a	timeslice	is	0.5,	then	the	minimum	output	in	that
timeslice	will	be	capped	at	0.083	(=	(1	/	6)	*	0.5),	assuming	there	are	6	timeslices	with	equal	length.

Looking	at	the	 settings.toml 	file,	you	should	see	that	the	file	has	already	been	linked	to	the	appropriate	sector:

[sectors.power]
type	=	'default'
priority	=	2
technodata	=	'{path}/power/Technodata.csv'
commodities_in	=	'{path}/power/CommIn.csv'
commodities_out	=	'{path}/power/CommOut.csv'
technodata_timeslices	=	'{path}/power/TechnodataTimeslices.csv'

Notice	the	 technodata_timeslices 	path	in	the	bottom	row.

The	 default_timeslice 	model	also	includes	one	additional	output,	which	gives	a	detailed	breakdown	of	commodity	supply	in	the	power	sector:

[[sectors.power.outputs]]
filename	=	"{cwd}/{default_output_dir}/{Sector}_{Quantity}.csv"
sink	=	"aggregate"
quantity	=	"supply"

This	will	create	a	new	file	in	the	results	folder	called	 Power_Supply.csv ,	which	will	be	important	for	the	analysis	below.

Once	you've	had	a	look	at	these	files,	run	MUSE	with	the	usual	command:

python	-m	muse	settings.toml

We	will	then	visualise	the	output	of	the	technologies	in	each	timeslice:



In	[1]:

from	pathlib	import	Path

import	numpy	as	np
import	pandas	as	pd
import	seaborn	as	sns

In	[2]:

def	plot_supply(supply,	capacity,	technology,	commodity,	year,	factor=None):
				#	Plot	timeslice	supply
				tech_supply	=	(
								supply[
												(supply.technology	==	technology)
												&	(supply.commodity	==	commodity)
												&	(supply.year	==	year)
								]
								.groupby(["timeslice",	"technology"])
								.sum()
								.reset_index()
				)

				ax	=	sns.barplot(
								data=tech_supply,
								x="timeslice",
								y="supply",
								hue="technology",
				)
				ax.set_title(f"{commodity}	supply	from	{technology}	in	{year}")

				#	Add	line	for	the	expected	minimum/maximum	supply
				if	factor	is	not	None:
								tech_capa	=	capacity[
												(capacity.technology	==	technology)	&	(capacity.year	==	year)
								].capacity.sum()
								min_supply	=	(tech_capa	/	6)	*	factor
								ax.plot(min_supply,	color="red")

path	=	Path("../tutorial-code/min-max-timeslice-constraints/1-min-constraint/Results/")
supply	=	pd.read_csv(path	/	"Power_Supply.csv")
capacity	=	pd.read_csv(path	/	"MCACapacity.csv")

plot_supply(
				supply,
				capacity,
				"gasCCGT",
				"electricity",
				2025,
				np.array([0.2,	0.4,	0.6,	0.4,	0.8,	1]),
)

Here,	we	can	see	that	the	supply	of	electricity	by	 gasCCGT 	in	2025	successfully	exceeds	the	lower-bound	cap	(red	line)	in	every	timeslice.



Maximum	timeslice	constraint

Next,	we	will	try	removing	the	minimum	constraint	for	the	last	two	timeslices	and	instead	imposing	a	maximum	constraint	using	the	UtilizationFactor
parameter

technology region year month day hour utilization_factor minimum_service_factor

gasCCGT R1 2020 all-year all-week night 1 0.2

gasCCGT R1 2020 all-year all-week morning 1 0.4

gasCCGT R1 2020 all-year all-week afternoon 1 0.6

gasCCGT R1 2020 all-year all-week early-peak 1 0.4

gasCCGT R1 2020 all-year all-week late-peak 0.5 0

gasCCGT R1 2020 all-year all-week evening 0.5 0

Once	this	has	been	saved,	we	can	run	the	model	again	( python	-m	muse	settings.toml ),	and	visualise	our	results	as	before.

In	[3]:

path	=	Path("../tutorial-code/min-max-timeslice-constraints/2-max-constraint/Results/")
supply	=	pd.read_csv(path	/	"Power_Supply.csv")
capacity	=	pd.read_csv(path	/	"MCACapacity.csv")

plot_supply(
				supply,
				capacity,
				"gasCCGT",
				"electricity",
				2025,
				np.array([1,	1,	1,	1,	0.5,	0.5]),
)

As	expected,	we	can	see	an	enforced	reduction	in	supply	in	the	final	two	timeslices,	compared	to	the	previous	scenario.

Summary
In	this	tutorial	we've	shown	had	to	impose	minimum	and	maximum	constraints	on	the	activity	of	technologies	on	a	timeslice-basis.	Not	only	will	this	impact
the	supply	of	comodities,	but	it	may	also	influence	investment	decisions.	You	are	encouraged	to	explore	the	implications	of	this	on	your	own.


