

Introduction to CLEWs

Hands-on lecture 10: Climate Change and Greenhouse Gas Emissions

V2.0

Kane Alexander ^a, Diki Darmawan ^b, Godswill Ifeanyi ^b, Shreyas Savanur ^b, Camilla Lo Guidice ^b, Francesco Gardumi ^b, Eunice Ramos ^c, Thomas Alfstad ^c, Leigh Martindale ^{ad}

^a Imperial College, London, United Kingdom

^b KTH Royal Institute of Technology, Stockholm, Sweden

^c United Nations Department of Economic and Social Affairs,

New York, United States

^d Loughborough University, Loughborough, United Kingdom

This work is licensed under the Creative Commons Attribution 4.0 International License.

Disclaimer: These worksheets have been adapted from work kindly provided by the United Nations Department of Economic and Social Affairs (UNDESA) and KTH Royal Institute of Technology.

Cite as: K. Alexander, D. Darmawan, G. Ifeanyi, S. Savanur, C. Lo Guidice, F. Gardumi, E. Ramos, T. Alfstad, L. Martindale 'Introduction to CLEWs Hands-on lecture 10: Climate Change and Greenhouse Gas Emissions', Climate Compatible Growth, 2025. DOI: 10.5281/zenodo.17018366.

Tags: CLEWs; Climate; Land; Energy; Water; Systems Modelling; Integrated; Policy Coherence; Installation; Hands-on; Climate Compatible Growth; Open Source; Teaching Kit.

Useful links:

- 1) Energy Modelling Community (EMC) <u>Discourse Forum</u> please use this for any CLEWs-related discussions, especially troubleshooting queries!
- 2) EMC LinkedIn.
- 3) CCG YouTube.
- 4) Data file here
- 5) Results File here

Pre-requisites:

1) Successful completion of all the activities under Hands-on lecture 9.

Learning outcomes

The previous activities focused on building an integrated model of energy, water, and land-use systems. The activities here focus on representing the fourth and final aspect of CLEWs: climate.

By the end of this Hands-on, you will be able to:

- 1) Quantify the level of emissions from different fuel sources in a model setting
- 2) Compare the level of emissions from different sectors in a model setting
- 3) Interpret the extent of emissions in the CLEWs systems and their potential impact

Activity 1 – Impacts ON climate: Adding emissions to the energy and agriculture sectors

Before you start, copy the model from the previous Hands-on.

- 1. In "Configure model", go to the tab "Emissions" and create these four emissions:
 - CO2, Carbon dioxide, kTon
 - N2O, Nitrous oxide, kTon
 - CH4, Methane, kTon
 - CO2EQ, Carbon dioxide equivalent, kTon

Technology	Description	Emission Activity Ratio
MINCOA	Coal mining	CO2, CO2EQ
MINGAS	Gas field	CO2, CO2EQ
DEMAGRDSL	Agriculture diesel demand	CO2, CO2EQ
DEMTRABIO	Transport biofuel demand	CO2, CO2EQ
LNDMAIRNF	Rainfed maize cultivation	N2O, CO2EQ
LNDRICRNF	Rainfed rice cultivation	CH4, CO2EQ
LNDMAIIRR	Irrigated maize cultivation	N2O, CO2EQ
LNDRICIRR	Irrigated rice cultivation	CH4, CO2EQ
LNDFOR	Forest	CO2, CO2EQ

- Now, assign the emissions to the technologies. Go to "Configure model" and the tab
 "Technologies" and assign emissions as indicated in the table below. Make sure to update the
 model once you have done this.
- 3. Go to "Data entry" and search for the parameter "Emission Activity Ratio" and add the values in the <u>table below</u> for the respective technologies and emissions. Make sure you "Save data" and "Update Model" to save your edits.

Technology	Description	Emis	Emission Activity Ratio (<u>kton</u> emission/activity unit) 2020-2035			
		CO2	N2O	CH4	CO2EQ*	
MINCOA	Coal mining	96.1	-	-	96.5	
MINGAS	Gas field	56.1	-	-	56.2	
DEMAGRDSL	Agriculture diesel demand	73.3	-	-	73.6	
DEMTRABIO	Transport biofuel demand	70.8	-	-	72.8	
LNDMAIRNF	Rainfed maize cultivation	-	0.2	-	102.0	
LNDRICRNF	Rainfed rice cultivation	-	-	6.0	162.5	
LNDMAIIRR	Irrigated maize cultivation	-	0.4	-	139.0	
LNDRICIRR	Irrigated rice cultivation	-	-	8.3	223.1	
LNDFOR	Forest	-14.4	-	-	-14.4	

^{*} Note that CO2EQ values for energy technologies consider marginal emissions of N2O and CH4 which multiplied by the GWP result in differences with CO2 emissions in the 3rd or 4th decimals.

- 4. Run the model of activity 1 and interpret the results of emissions of selected technologies from different sectors. In this final part of this activity, the results for the variables below will be explored:
- 1) **Annual Technology Emission By Mode**: This shows the number of emissions produced by a technology.
 - i) Visualise the results of CO2EQ emissions for all technologies with assigned emissions.
 - ii) Visualise the results of CO2EQ emissions for emitting technologies (excluding forests).

- iii) Visualise the results of CO2EQ for only forests.
- iv) Visualise the results for the separate GHGs (i.e., CO2, CH4, N2O).
- v) Visualise the results for all emissions for all crops.
- vi) Visualise the results for the separate GHGs (i.e., CO2EQ, CH4, and N2O) for the cropland technologies.
- vii) Visualise the results for the separate GHGs (i.e., CH4, N2O, and CO2EQ) for cropland technologies and diesel use in agriculture.
- viii) Visualise the results for biofuel production (CO2 and CO2EQ) and diesel use in agriculture (CO2 and CO2EQ).

2) Production By Technology By Mode:

i) Visualise the results for the electricity generation mix.

Activity 2 – Impacts ON climate: Representing land use change (LUC) emissions

Estimating the "Emission Activity Change Ratio" parameter value for LNDFOR:

1. In "Data entry", search for the parameter "Emission To Activity Change", and in the technology "LNDFOR" and for the emissions CO2 and CO2EQ, introduce the value -54000 for all years in the modelling period. Click on "Save data" to save your edits.

EACR, results in positive value of emissions due to activity change - corresponding to the release

Technology	Emission	Emission To Activity Change Ratio
LNDFOR	CO2	-54000 kTon CO ₂ / 103 km ²
LNDFOR	CO2EQ	-54000 kTon CO ₂ EQ / 103 km ²

- 2. Run the model of hands-on 10 activity 2 and interpret the results of land use change. In this activity, the results for the variables below will be explored:
- 1) Emission by Activity Change: This shows the emissions due to land use change every year.
 - a) Visualize the emissions from land use change due to forest land conversion.
- 2) **Annual Technology Emission By Mode:** Shows the number of emission(s) by technology each year.
 - a) Visualize and compare the CO2EQ emissions for all technologies with assigned emissions for both climate exercises.
- 3) **Annual Technology Emissions**: This shows the number of emissions by technology plus the Emissions By Activity Change.
 - a) Visualize and compare the results of CO2EQ emissions for all technologies with assigned emissions for the two climate activities.