Infrastructure for sustainable
development

ZiE UNIVERSITY OF
“4¥ CAMBRIDGE

’\ Centre for
o) s

Data preparation and infrastructure exposure to flooding

This notebook forms the basis of "Hands-On 5” in the CCG course.

1. Extract infrastructure data from OpenStreetMap
2. Extract flood hazard data from Aqueduct

3. Intersect floods with roads to calculate exposure
4. Open QGIS to look at the data

The os and subprocess modules are built into Python
see https://docs.python.org/3/library/os.html
import os

see https://docs.python.org/3/library/subprocess.html
import subprocess

see https://docs.python.org/3/library/time.hhtml
import time

see https://docs.python.org/3/library/pathlib.html
from pathlib import Path

Activity 1: Extract infrastructure data

Step 1) On your desktop, create a folder called ghana_tutorial

Step 2) Create a variable to store the folder location In the cell below, type in the path to
your desktop, by changing NAME to match your username as shown on your computer

edit this if using a Mac (otherwise delete)
data_folder = Path("Path/to/folder/ghana tutorial")

edit this if using Windows (otherwise delete)
data_folder = Path("C:YOUR_PATH/ghana_tutorial”)

delete this line
data_folder = Path("../data")

CCG - OPSIS, Infrastructure for sustainable development

Step 3) Load Python libraries

Pandas and GeoPandas are libraries for working with datasets
see https://geopandas.orqg/
import geopandas as gpd

gpd._compat.USE_PYGEOS = False
see https://pandas.pydata.org/
import pandas as pd

This package interacts with a risk data extract service, also accessible at
https://qglobal.infrastructureresilience.org/dounloads
import irv_autopkg_client

We'll use snail to intersect roads with flooding
import snail.intersection
import snail.io

snkit helps generate connected networks from lines and mnodes
see https://snkit.readthedocs.i0/

import snkit

import snkit.network

PyPROJ %s a library for working with geographic projections
see https://pyproj4.github.io/
from pyproj import Geod

from matplotlib import pyplot as plt

Step 4) and 5) Download and save data Download the ghana-latest-free.shp.zip dataset
from http://download.geofabrik.de/africa/ghana.html, extract the zip folder and save the extracted
folder within your new folder ghana_tutorial

roads = gpd.read file(
data_folder / "ghana-latest-free" / "gis_osm_roads_free_1.shp"

)

Step 6) Load the road dataset you've just downloaded

roads.head(5)

Step 7) To take a look at the data and the attribute table fill in and run the next two cells

osm_id code fclass name ref oneway maxspeed \
0 4790591 5121 wunclassified Airport Road None B 0
1 4790692 5122 residential Nortei Ababio Road None B 0

CCG - OPSIS, Infrastructure for sustainable development

http://download.geofabrik.de/africa/ghana.html

2 4790594 5115 tertiary Airport Road None F 0

3 4790596 5121 unclassified Airport Road None F 0
4 4790597 5122 residential Volta Road None B 0

layer bridge tunnel geometry
0 0 F F LINESTRING (-0.17184 5.60847, -0.17182 5.60849. ..
1 0 F F LINESTRING (-0.18282 5.61197, -0.18336 5.61198. ..
2 0 F F LINESTRING (-0.17544 5.6055, -0.17418 5.60555,. ..
3 0 F F LINESTRING (-0.17207 5.60853, -0.17207 5.60844. ..
4 0 F F LINESTRING (-0.18282 5.61197, -0.1828 5.61262, ...

roads.fclass.unique()

array(['unclassified', 'residential', 'tertiary', 'tertiary_link',
'secondary', 'trunk', 'service', 'primary', 'motorway_link',
'"trunk link', 'primary_link', 'secondary_link',6 'footway', 'path',
'track', 'motorway', 'track_grade3d', 'track_grade4', 'steps',
'pedestrian', 'bridleway', 'cycleway', 'track_grade2',
'track_gradeb', 'track_gradel', 'living street', 'busway'],
dtype=object)

Step 8) Next we want to make a couple of changes to the data Filter out minor and residential
roads, tracks and paths.

Keep only the spectified columns
roads = roads[["osm_id", "fclass", "name", "geometry"]]
Keep only the roads whose "fclass" is im the list
roads = roads[
roads.fclass.isin(
I

"motorway",

"motorway_link",

"trunk",

"trunk link",

"primary",

"primary link",

"secondary",

"secondary_link",

"tertiary",

"tertiary_link",

]
Rename some columns
roads = roads.rename(
columns={
"fclass": "road_type",

CCG - OPSIS, Infrastructure for sustainable development

Create topological network information - this adds information that will let us find routes over the road
network.

o add nodes at the start and end of each road segment
« split roads at junctions, so each segment goes from junction to junction
e add ids to each node and edge, and add from_id and to_id to each edge

road_network = snkit.Network(edges=roads)

with_endpoints = snkit.network.add_endpoints(road_network)
split_edges = snkit.network.split_edges_at_nodes(with_endpoints)
with ids = snkit.network.add ids(
split_edges, id_col="id", edge_prefix='"roade", node_prefix="roadn"
)
connected = snkit.network.add topology(with_ids)
roads = connected.edges
road _nodes = connected.nodes

Calculate the length of each road segment in meters

geod = Geod(ellps="WGS84")
roads["length m"] = roads.geometry.apply(geod.geometry_length)

roads.tail(5)

name \
None
None
None
None
None

osm_id
1290190247
1290190248
1290190251
1290190251
1290190252

road_type
tertiary_link
tertiary_link
tertiary
tertiary
tertiary_link

15992
15993
15994
15995
15996

geometry id '\
LINESTRING (-0.12481 5.74521, -0.1249 5.74498) roade_ 15992
LINESTRING (-0.135 5.74826, -0.13501 5.74795) roade_15993
LINESTRING (-0.1272 5.74611, -0.1249 5.74498) roade_15994
LINESTRING (-0.1249 5.74498, -0.12394 5.74449,... roade_15995
LINESTRING (-0.14601 5.74863, -0.14594 5.74867... roade_15996

15992
15993
156994
15995
15996

15992
15993
15994
15995
15996

roads

from_id
roadn_12502
roadn_12504
roadn_ 10570
roadn_12503
roadn_12507

.set_crs (4326,

to_id
roadn_12503
roadn_ 12505
roadn 12503
roadn_12506
roadn_12508

inplace=True)

length m
27.700205
33.975731

283.569056
888.391459
39.078872

road_nodes.set_crs(4326, inplace=True)
road_nodes.crs

<Geographic 2D CRS: EPSG:4326>

CCG - OPSIS, Infrastructure for sustainable development

Name: WGS 84

Axis Info [ellipsoidal]:

- Lat[north]: Geodetic latitude (degree)

- Lon[east]: Geodetic longitude (degree)
Area of Use:

- name: World.

- bounds: (-180.0, -90.0, 180.0, 90.0)
Datum: World Geodetic System 1984 ensemble
- Ellipsoid: WGS 84

- Prime Meridian: Greenwich

main_roads = roads[roads["road type"].isin(["trunk","secondary",])]
f, ax = plt.subplots()

main_roads.plot(

ax=ax,
alpha=1,
linewidth=0.5,
)
ax.grid()

ax.set_title("Main roads of Ghana")
ax.set_xlabel("Longitude [degl")
ax.set_ylabel("Latitude [deg]")
plt.show()

CCG - OPSIS, Infrastructure for sustainable development

Main roads of Ghana

11 e

10 [}

Latitude [deqg]

Longitude [deg]

roads.to_file(
data_folder / "GHA_OSM_roads.gpkg",
layer="edges",
driver="GPKG",

)

road nodes.to file(
data_folder / "GHA_OSM_roads.gpkg",
layer="nodes",
driver="GPKG",

)

Step 9) Save the pre-processed dataset

Activity 2: Extract hazard data
The full Aqueduct dataset is available to download openly.

Country-level extracts are available through the Global Systemic Risk Assessment Tool (G-SRAT). This
section uses that service to download an extract for Ghana.

country_iso = "gha"

Create a client to connect to the data API:

CCG - OPSIS, Infrastructure for sustainable development

https://www.wri.org/resources/data-sets/aqueduct-floods-hazard-maps
https://global.infrastructureresilience.org/downloads/

client = irv_autopkg client.Client()

job_id = client.job_submit(country_iso, ["wri_aqueduct.version_2"])

while not client.job_complete(job_id):
print ("Processing...")
time.sleep(1)

client.extract_download(
country_iso,
data_folder / "flood_layer",
there may be other datasets available, but only download the following
dataset_filter=["wri_aqueduct.version 2"],
overwrite=True,

Alternative: download flood hazard data from Aqueduct The full Aqueduct dataset is available
to download. There are some scripts and summary of the data you may find useful at nismod/aqueduct.

There are almost 700 files in the full Aqueduct dataset, of up to around 100MB each, so we don't
recommend downloading all of them unless you intend to do further analysis.

The next steps show how to clip a region out of the global dataset, in case you prefer to work from the
original global Aqueduct files.

To follow this step, we suggest downloading inunriver historical _000000000WATCH__1980_ rp00100.tif
to work through the next steps. Save the downloaded file in a new folder titled flood_layer under your
data_folder.

xmin = "-3.262509"
ymin = "4.737128"
xmax = "1.187968"
ymax = "11.162937"

for root, dirs, files in os.walk(os.path.join(data_folder, "flood layer")):
print("Looking in", root)
for file in sorted(files):
if file_ .endswith(".tif") and not file_ .endswith(
f'"-{country_isol}.tif"
E
print ("Found tif file", file)
stem = file [:-4]
input_file = os.path.join(root, file_)

Clip file to bounds

clip file = os.path.join(
root,
"gha',
"wri_aqueduct_version_ 2",
f"{stem}-{country_isol}.tif",

CCG - OPSIS, Infrastructure for sustainable development

https://www.wri.org/resources/data-sets/aqueduct-floods-hazard-maps
https://github.com/nismod/aqueduct
http://wri-projects.s3.amazonaws.com/AqueductFloodTool/download/v2/inunriver_historical_000000000WATCH_1980_rp00100.tif

)
try:
os.remove(clip_file)
except FileNotFoundError:
pass
cmd = [
"gdalwarp",
n_te",
xmin,
ymin,
Xmax,
ymax,
input _file,
clip_file,
]
print (cmd)
p = subprocess.run(cmd, capture_output=True)
print (p.stdout.decode("utf8"))
print(p.stderr.decode("utf8"))
print(clip_file)

Activity 3: Intersect hazard

Let us now intersect the hazard and the roads, starting with one hazard initially so we save time.

flood_path = Path(
data_folder,
"flood_layer",
"gha',
"wri_aqueduct_version_2",
"inunriver_historical_000OOOOOOOWATCH_1980_rp00100-gha.tif",

output_path = Path(

data_folder,

"results",

"inunriver_historical_ OOOOOOOOOWATCH_1980_rp00100__roads_exposure.gpkg",
)

Step 1) Specify your input and output path as well as the name of the intersection Read
in pre-processed road edges, as created earlier

roads = gpd.read_file(data_folder / "GHA 0SM roads.gpkg", layer="edges")

grid, bands = snail.io.read _raster_metadata(flood_path)

CCG - OPSIS, Infrastructure for sustainable development

prepared = snail.intersection.prepare_linestrings(roads)
flood_intersections = snail.intersection.split_linestrings(prepared, grid)
flood_intersections = snail.intersection.apply_indices(
flood_intersections, grid
)
flood_data = snail.io.read_raster_band_data(flood_path)
flood_intersections[
"inunriver__epoch _historical rcp_baseline_ _rp_ 100"
] = snail.intersection.get_raster_values for_splits(
flood intersections, flood data

)

Step 2) Run the intersection Calculate the exposed length

geod = Geod(ellps="WGS84")
flood_intersections["flood length m"] = flood_intersections.geometry.apply(
geod.geometry_length

)

flood_intersections.tail(2)

osm_id road_type name id from_id to_id \
15995 1290190251 tertiary None roade_15995 roadn_12503 roadn_12506
15996 1290190252 tertiary_link None roade_15996 roadn_12507 roadn_12508

length m geometry split \
156995 888.391459 LINESTRING (-0.1249 5.74498, -0.12394 5.74449, ... 0
156996 39.078872 LINESTRING (-0.14601 5.74863, -0.14594 5.74867... 0

index_i index_j inunriver__epoch_historical__rcp_baseline__rp_100 \
15995 377 650 0.0
15996 374 650 0.0

flood_length m
15995 888.391459
15996 39.078872

Calculate the proportion of roads in our dataset which are exposed to >=1m flood depths in this scenario

exposed_1m = flood_intersections[
flood_intersections.inunriver__epoch_historical__rcp_baseline__rp_ 100 >= 1

]

exposed_length _km = exposed_lm.flood_length m.sum() * le-3
exposed_length km

765.1773274965403

all_roads_in_dataset_length_km = roads.length m.sum() * 1le-3

all _roads_in_dataset_length_km

29441.600100468964

CCG - OPSIS, Infrastructure for sustainable development

proportion = exposed_length km / all_roads_in dataset_length_km
proportion
0.025989665129795447

f"{proportion:.1%} of roads in this dataset are exposed to flood depths of >= 1m in a histor:

'2.6% of roads in this dataset are exposed to flood depths of >= 1m in a historical 1-in-100

output_path.parent.mkdir(parents=True, exist_ok=True)

Save to file (with spatial data)
flood_intersections.to_file(output_path, driver="GPKG")

Save to CSV (without spatial data)

flood_intersections.drop(columns="geometry").to_csv(

output_path.parent / output_path.name.replace(".gpkg", ".csv"
)

CCG - OPSIS, Infrastructure for sustainable development

	Data preparation and infrastructure exposure to flooding
	Activity 1: Extract infrastructure data
	Step 3) Load Python libraries
	Activity 2: Extract hazard data
	Activity 3: Intersect hazard

