

Energy System Modelling Using OSeMOSYS

Hands-on 1

Please use the following citation for:

This exercise

Plazas-Niño, F., Alexander, K. (2025, February). Hands-on 1: Energy System Modelling Using OSeMOSYS (Version 1.0.). Climate Compatible Growth. DOI: 10.5281/zenodo.14868500

OSeMOSYS UI software

Climate Compatible Growth. (2024). MUIO (Version v5.0.0). GitHub. https://github.com/OSeMOSYS/MUIO/releases

. . .

Learning outcomes

By the end of this exercise, you will learn how to:

- 1) Install the Modelling User Interface for OSeMOSYS (MUIO).
- 2) Understand the case study of a basic energy system that will be modelled during the course.

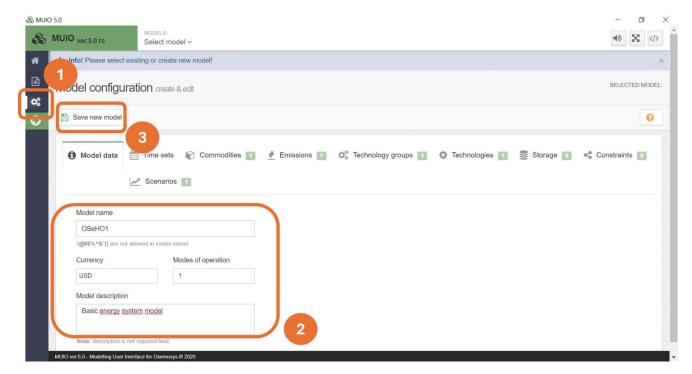
Activity 1 – Install the interface

N.B. In order to carry out this activity and all the ones that follow in the course, you need a computer that has **Windows 10 Operating System or later.**

Through this activity, you will install the Modelling User Interface for OSeMOSYS (MUIO) you will be using for creating models throughout the course.

To install the MUIO:

- 1. Download the latest version of the user interface (**OSeMOSYS-MUIO**) from <u>here</u>.
- Move the .exe file from your download folder to a folder where you have administrator privileges. This may be for instance inside the folder: users>>name_of_the_user or any other folder you prefer.
- 3. Right-click on osemosys.exe and click '**Run as administrator**'. This will start the installation of the MUIO. The installation may take several minutes. Once it is complete, the installation window will simply disappear.



- 4. The App will open automatically once the installation is complete. If not, search on the Windows Taskbar for "MUIO" and open the App.
- 5. You will see the MUIO in a new window.

You will have to configure a new model and add some inputs. Once you have opened the MUIO:

- 6. Go to the left panel and click on 'Configure model'.
- 7. Enter a 'Model name' (in this case it was named **OSeHO1**), select USD as currency, insert 1 as number of Modes of operation, and write a short description of your model choosing in 'Model description'. Press on 'Save new model'.

Activity 2 – Case study description

As discussed in Lecture 1, the first stage in the energy system modelling process is to formulate the policy or research question to be addressed. This requires a thorough understanding of the national or regional context, which forms the narrative behind the questions. In this section, we provide key information about the fictional energy system:

- **Demographics and Economy:** A small, landlocked country with a population of 7 million, 70% of whom live in urban areas. The population growth rate is 1.5%, with urbanization increasing by 1% per year. The GDP is 121 billion USD, with a GDP per capita of just over 9,000 USD, growing at an annual rate of 3.5%.
- **Electricity Sector:** The electricity sector relies on diesel and natural gas power plants connected to a centralized grid. However, 15% of the population lacks access to electricity, and distributed generation is non-existent. The country has potential for renewable energy production via run-of-river hydropower, biomass, wind, and solar photovoltaic systems.
- **Residential sector:** The tropical climate eliminates the need for heating systems. Cooking is predominantly done using biomass and liquefied petroleum gas (LPG).

- **Industry sector:** The economy is primarily based on agriculture and services, with a nascent industrial sector. Some small companies process crops into final products, representing a modest demand for indirect heat.
- **Transportation Sector:** The country has approximately 120,000 cars. Heavy longhaul freight transport accounts for a marginal share of fuel consumption.

In the upcoming hands-on sessions, we will translate these conditions into modelling features and explore how different parameters are used to assess optimal pathways for the future development of this energy system.