

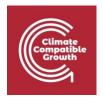
Modelagem de sistemas energéticos usando OSeMOSYS

Aula Prática 8

Use a seguinte citação para:

Este exercício

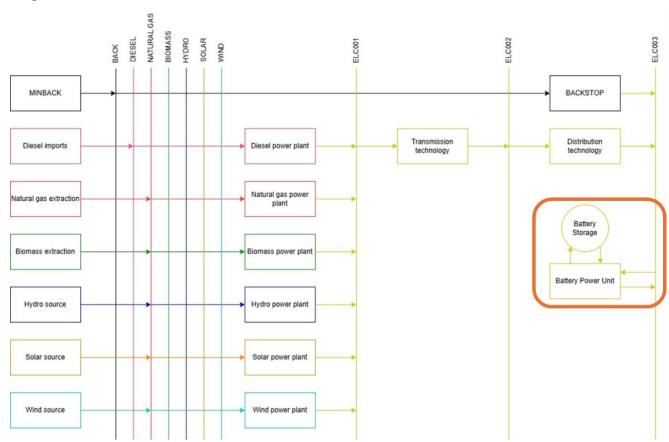
Plazas-Niño, F., Lubello, P. (2025, fevereiro). Hands-on 8: Energy System Modelling Using OSeMOSYS (Versão 1.0.). Climate Compatible Growth. DOI: 10.5281/zenodo.14871381


Software OSeMOSYS UI

Climate Compatible Growth. (2024). MUIO (Versão v5.0.0). GitHub. https://github.com/OSeMOSYS/MUIO/releases

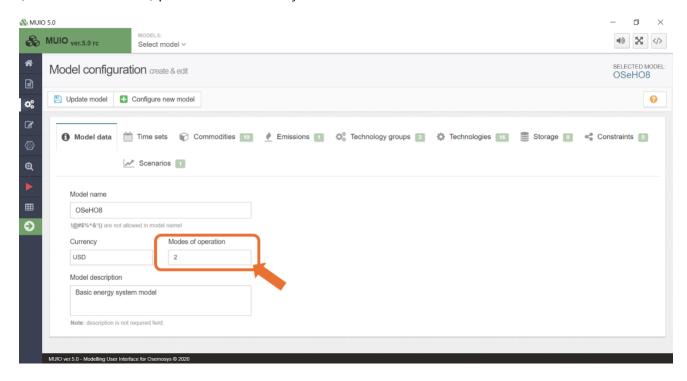
Resultados da aprendizagem

Ao final deste exercício, você será capaz de


1) Representar tecnologias de armazenamento

Modelagem de armazenamento

Na Aula 9, aprendemos como representar uma tecnologia de armazenamento no OSeMOSYS e quais parâmetros caracterizam as tecnologias de armazenamento, como os sistemas de armazenamento de energia por bateria (Battery Energy Storage Systems - BESS) e as usinas de armazenamento de energia hidrelétrica bombeada (Pumped Hydro Energy Storage - PHES).

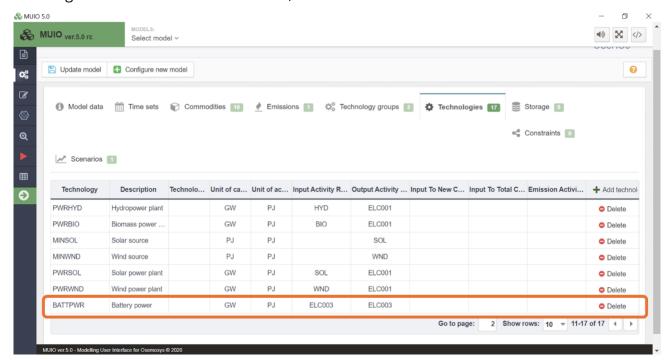

Neste exercício prático, modelaremos um sistema de bateria em escala de utilidade pública conectado à rede de distribuição adicionando duas tecnologias: 1 tecnologia de armazenamento para representar o componente de energia e 1 tecnologia convencional para representar o componente de potência. Nenhum combustível novo será adicionado ao modelo. Criaremos as partes destacadas do SER abaixo. **Observação:** Atualize seu SER no diagrams.net.

IMPORTANTE: Antes de fazer qualquer outra coisa, você deve copiar o modelo e renomeálo da mesma forma que fez antes (OSeHO8 desta vez).

Conforme estudado na aula 9, os sistemas de armazenamento devem carregar e descarregar em dois modos diferentes de operação quando usamos a mesma tecnologia para o componente de energia, pois o OSeMOSYS não permite que uma única tecnologia execute duas ações opostas no mesmo modo. Portanto, o primeiro passo é criar um modo de operação adicional, alterando o valor de 1 para 2 no campo **Mode of operation (Modos de operação)** na guia de configuração do modelo. Em seguida, clique em **Update model** (**Atualizar modelo**) para salvar a alteração.

Definir tecnologia de energia elétrica

Em primeiro lugar, adicionaremos a tecnologia BATTPWR para representar o componente de energia do sistema de bateria. Podemos usar as mesmas etapas abordadas nas aulas práticas 5 e 6. Ao representar uma tecnologia de energia, os seguintes parâmetros devem ser considerados:



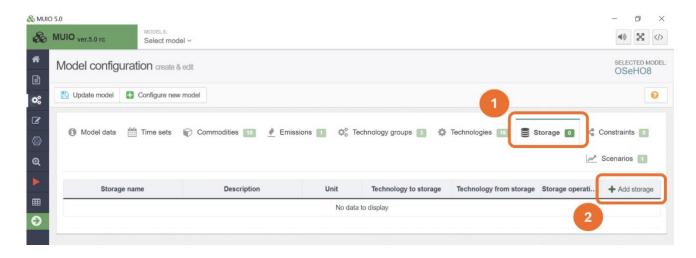
- **InputActivityRatio**: define a taxa de combustível consumido com base na eficiência do carregamento (ou seja, eletricidade)
- OutputActivityRatio: define o combustível fornecido com base na eficiência da descarga (ou seja, eletricidade)
- CapacityToActivityUnit: usado para converter dados relacionados à capacidade da tecnologia na atividade que ela pode gerar (esse valor deve ser definido como 31,536).
- **FixedCost**: define o custo fixo de operação e manutenção (\$/kW)
- **CapitalCost**: define o custo de investimento overnight da unidade (\$/kW)
- **OperationalLife**: define a vida útil da tecnologia (em anos)
- **ResidualCapacity**: define a capacidade existente da tecnologia (em GW) e seu descomissionamento esperado.

Experimente: vamos adicionar essa tecnologia ao modelo.

1. Vá para a página de configuração do modelo e adicione uma nova tecnologia chamada **"BATTPWR"**. A unidade de capacidade é GW e a unidade de atividade é PJ. Como esse sistema de bateria está conectado à rede de distribuição, os combustíveis de entrada e saída são ELC003.

IMPORTANTE: lembre-se de atualizar seu modelo sempre que adicionar dados, tecnologias ou commodities. Além disso, salve os dados todas as vezes.

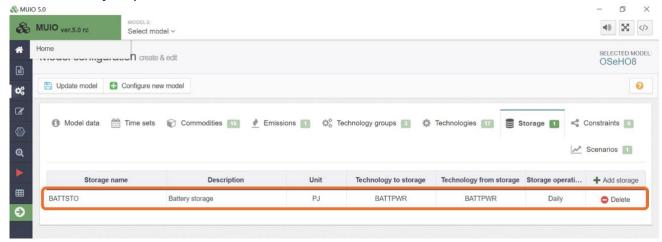
2. Adicione dados para **BATTPWR** conforme apresentado no arquivo 'Data Preparation OSeHO8'.


OBSERVAÇÃO: observe que a taxa de atividade de entrada corresponde ao Modo de Operação 1, enquanto a taxa de atividade de saída se aplica ao Modo de Operação 2.

Definir tecnologias de armazenamento

Vamos incorporar o componente de energia do sistema de armazenamento usando a guia Storage (Armazenamento) na página de configuração do modelo. Lembre-se de que esse componente representa o processo de armazenamento de energia no sistema de bateria.

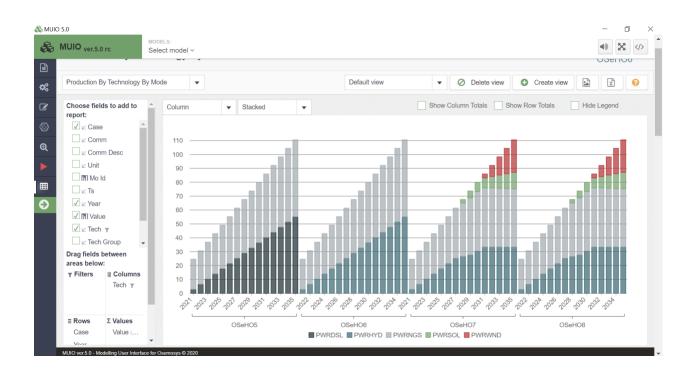
Experimente: Adicionar a tecnologia de armazenamento BATTSTO


 Na página de configuração do modelo, você deve clicar na guia "Storage" (Armazenamento) e, em seguida, adicionar um armazenamento pressionando "+ Add Storage" (semelhante à forma como você adiciona uma commodity). Conforme mostrado na imagem abaixo:

2. Você precisa adicionar uma nova, mas, nesse caso, altere os nomes da tecnologia padrão para "BATTSTO". A unidade é PJ, e as tecnologias de carga e descarga do armazenamento são "BATTPWR". A operação de armazenamento deve ser definida como "diária", pois as baterias são projetadas para armazenamento de energia de curta duração. Para soluções de armazenamento sazonais, como sistemas de

hidrogênio, a operação de armazenamento pode ser definida como "anual". Depois de fazer isso, certifique-se de atualizar o modelo, pois ele só adicionará a nova atualização quando você fizer isso.

- 3. Você deve adicionar os dados para os seguintes parâmetros de acordo com o arquivo 'Data Preparation OSeHO8'. (como foi feito na seção de entrada de dados do MUIO anteriormente): Divisão de dias (DaySplit), Tecnologia para armazenamento (TechnologyToStorage), Tecnologia recebe do armazenamento (TechnologyFromStorage), Custo de capital do armazenamento (CapitalCostStorage) e Vida operacional do armazenamento (OperationalLifeStorage).
- 4. Toda vez que você adicionar dados a um parâmetro diferente, **deverá salvar os dados antes de adicionar dados a outro parâmetro.**
- 5. Em seguida, você deve atualizar o modelo (novamente, é recomendável fazer isso com a maior frequência possível)


Execute o modelo e verifique os resultados

Execute o modelo na interface do usuário, conforme demonstrado nos exercícios anteriores. O gráfico **Production by Technology by Mode (PJ)** obtido após a execução do modelo da aula prática 8 é exibido abaixo.

Nesse caso, o sistema se comporta exatamente como no aula prática 7, demonstrando que as baterias não são econômicas nas condições fornecidas.

Desafio: Usando o parâmetro **TotalTechnologyModelPeriodActivityUpperLimit** definido como zero, desative todas as usinas de energia, exceto a usina de energia solar (ou seja, desative **PWRDSL**, **PWRNGS**, **PWRHYD**, **PWRBIO** e **PWRWND**) e execute novamente o modelo. Observe como as baterias colaboram com as usinas de energia solar para atender à demanda de eletricidade.

