

Introduction to CLEWs

Hands-on lecture 7: Introducing land constraints and technoeconomic parameters

V2.0

Kane Alexander ^a, Diki Darmawan ^b, Godswill Ifeanyi ^b, Shreyas Savanur ^b, Camilla Lo Guidice ^b, Francesco Gardumi ^b, Eunice Ramos ^c, Thomas Alfstad ^c, Leigh Martindale ^{ad}

^a Imperial College, London, United Kingdom

^b KTH Royal Institute of Technology, Stockholm, Sweden

^c United Nations Department of Economic and Social Affairs,

New York, United States

^d Loughborough University, Loughborough, United Kingdom

This work is licensed under the [Creative Commons Attribution 4.0](#) International License.

Disclaimer: These worksheets have been adapted from work kindly provided by the United Nations Department of Economic and Social Affairs (UNDESA) and KTH Royal Institute of Technology.

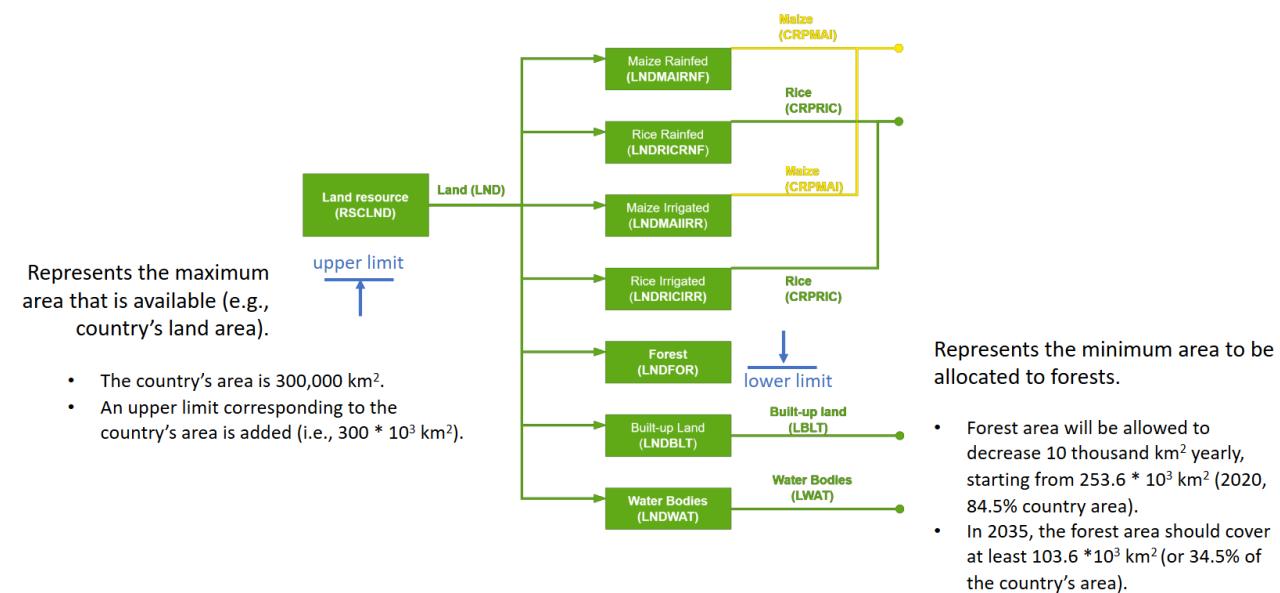
Cite as: K. Alexander, D. Darmawan, G. Ifeanyi, S. Savanur, C. Lo Guidice, F. Gardumi, E. Ramos, T. Alfstad, L. Martindale, 'Introduction to CLEWs Hands-on lecture 7: Introducing land constraints and technoeconomic parameters', Climate Compatible Growth, 2025. DOI: 10.5281/zenodo.17551548.

Tags: CLEWs; Climate; Land; Energy; Water; Systems Modelling; Integrated; Policy Coherence; Installation; Hands-on; Climate Compatible Growth; Open Source; Teaching Kit.

Useful links:

- 1) Energy Modelling Community (EMC) [Discourse Forum](#) – please use this for any CLEWs-related discussions, especially troubleshooting queries!
- 2) EMC [LinkedIn](#).
- 3) CCG [YouTube](#).
- 4) Hands-on Solutions can be found [here](#).

Pre-requisites:


- 1) Successful completion of all the activities under Hands-on Lecture 6.

Learning outcomes

In this exercise, you will apply various constraints and add cost parameters for different land technologies:

- 1) Limit the **activity and capacity** of technologies with OSeMOSYS parameters
- 2) Use different types of constraints for land uses and apply cost parameters to different land technologies.
- 3) Represent existing land use (practices) and impose activity expansion constraints.

Activity 1 – Introducing land constraints

1. Open your “CLEWs OU Data File”, and in the sheet “4.2. Land”, go to the technology RSCLND and find the **Total Annual Max Capacity**.
2. Add these data in the respective parameters using the “Data Entry” in MUO. **Save data** after the edits.
3. Proceed similarly for the **Total Technology Annual Activity Lower Limit** for the forest technology (LNDFOR). Find the technology in the “4.2. Land” sheet in the “CLEWs model data” Excel file. Add the values in the “Total Technology Annual Activity Lower Limit” parameter line to the model. **Save data** once you have finished editing.

Total Annual Max Capacity		Y	Unit	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
Scenario	Technology																		
SC_0	MINCOA	PJ	10 ³ Km ²	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	
SC_0	MINGAS	PJ	10 ³ Km ²	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	
SC_0	PWRCOA	GW	10 ³ Km ²	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	
SC_0	PWRGAS	GW	10 ³ Km ²	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	
SC_0	PWRTRN	GW	10 ³ Km ²	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	
SC_0	RSCWND	PJ	10 ³ Km ²	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000
SC_0	RSCSOL	PJ	10 ³ Km ²	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000
SC_0	RSCHYD	PJ	10 ³ Km ²	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000
SC_0	PWRWND	GW	10 ³ Km ²	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000
SC_0	PWRSQL	GW	10 ³ Km ²	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000
SC_0	PWRHYD	GW	10 ³ Km ²	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000
SC_0	RSCLND	10 ³ Km ²	300.000	300.000	300.000	300.000	300.000	300.000	300.000	300.000	300.000	300.000	300.000	300.000	300.000	300.000	300.000	300.000	300.000
SC_0	LNDMAIRNF	10 ³ Km ²	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000
SC_0	LNDRICRNF	10 ³ Km ²	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000
SC_0	LNDMAIIRR	10 ³ Km ²	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000
SC_0	LNDRICIRR	10 ³ Km ²	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000
SC_0	LNDFOR	10 ³ Km ²	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000
SC_0	LNDBLT	10 ³ Km ²	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000
SC_0	LNDWAT	10 ³ Km ²	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000

Total Technology Annual Activity Lower Limit		Y	Unit	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
SC_0	MINCOA	PJ	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
SC_0	MINGAS	PJ	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
SC_0	PWRCOA	PJ	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
SC_0	PWRGAS	PJ	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
SC_0	PWRTRN	PJ	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
SC_0	RSCWND	PJ	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
SC_0	RSCSOL	PJ	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
SC_0	RSCHYD	PJ	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
SC_0	PWRWND	PJ	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
SC_0	PWRSOL	PJ	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
SC_0	PWRHYD	PJ	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
SC_0	RSCLND	10 ³ km ²	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
SC_0	LNDMAIRNF	10 ³ km ²	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
SC_0	LNDRICRNF	10 ³ km ²	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
SC_0	LNDMAIRR	10 ³ km ²	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
SC_0	LNDRICIRR	10 ³ km ²	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
SC_0	LNDFOR	10 ³ km ²	253.600	243.600	233.600	223.600	213.600	203.600	193.600	183.600	173.600	163.600	153.600	143.600	133.600	123.600	113.600	103.600	
SC_0	LNDBLT	10 ³ km ²	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
SC_0	LNDWAT	10 ³ km ²	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

4. **Now, RUN THE MODEL!** This is the first time running energy and land in a model together... You should look at the following results:

- **Use by Technology By Mode:** This shows the use of input commodities to a technology by mode of operation. The results inform on the amount of land (10³km²) resource used by the different land covers.
 - Change the graph from default (Accumulated New Capacity) to 'Use by Technology by Mode'.
 - Filter case (right click and go to field settings) to only the case run for HO7_A1.
 - Add Technology Description and untick Tech from **Columns** (or leave as tech if you want the naming conventions on your graph).
 - Add Commodity to **Filters** and filter out for only **LND**.
 - You should now see a result for how much land is being used by each technology. **Create a view** and give it a nice title, then you can save that view and download the graph if you wish!

You set the Max Capacity of Land to 300 (10³km²), but is all of that land area being used up in your model?

Activity 2– Introducing technoeconomic parameters for land

1. Enter data for the listed parameters by searching for and selecting the respective parameter in “**Data Entry**” in the left-hand side menu. Click on “**Save Data**” after editing each parameter. The data will be entered for all years of the modelling period, i.e., 2020-2035, except for the “Operational Life” and “Capacity To Activity Unit”, which have one value for the entire time domain. **You can also use the data file to copy & paste this data!**

Parameter		Capital Cost		Fixed Cost		Variable Cost		Operational Life		Capacity to Activity Unit	
Units		M\$/10 ³ km ²		M\$/10 ³ km ²		M\$/10 ³ km ²		Years		10 ³ km ² /10 ³ km ²	
Technology	RSCLND		0.001*		0.001*		0.001*		100		1*
	LNDMAIRNF		44		70		42		15		1*
	LNDRICRNF		60		110		57		15		1*
	LNDMAIIRR		51		76		53		15		1*
	LNDRICIRR		78		141		77		15		1*
	LNDFOR		233		0.001*		-29.4		50		1*
	LNDBLT		2904		0.001*		0.001*		20		1*
	LNDWAT		0.001*		0.001*		0.001*		100		1*

* Default value

Capital Cost Region, year, technology																	SELECTED MODEL CLEWs exercise										
Capital Cost		Scenario	Technology	Y	Unit	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	Save data	0.0	0.000	Go to page:	Show rows:	1-8 of 8
SC_0	RSCLND	10 ³ U...	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
SC_0	LNDMAIRNF	10 ³ U...	44.000	44.000	44.000	44.000	44.000	44.000	44.000	44.000	44.000	44.000	44.000	44.000	44.000	44.000	44.000	44.000	44.000	44.000	44.000	44.000	44.000	44.000	44.000		
SC_0	LNDRICRNF	10 ³ U...	60.000	60.000	60.000	60.000	60.000	60.000	60.000	60.000	60.000	60.000	60.000	60.000	60.000	60.000	60.000	60.000	60.000	60.000	60.000	60.000	60.000	60.000	60.000		
SC_0	LNDMAIIRR	10 ³ U...	51.000	51.000	51.000	51.000	51.000	51.000	51.000	51.000	51.000	51.000	51.000	51.000	51.000	51.000	51.000	51.000	51.000	51.000	51.000	51.000	51.000	51.000	51.000		
SC_0	LNDRICIRR	10 ³ U...	78.000	78.000	78.000	78.000	78.000	78.000	78.000	78.000	78.000	78.000	78.000	78.000	78.000	78.000	78.000	78.000	78.000	78.000	78.000	78.000	78.000	78.000	78.000		
SC_0	LNDFOR	10 ³ U...	233.000	233.000	233.000	233.000	233.000	233.000	233.000	233.000	233.000	233.000	233.000	233.000	233.000	233.000	233.000	233.000	233.000	233.000	233.000	233.000	233.000	233.000	233.000		
SC_0	LNDBLT	10 ³ U...	904.000	904.000	904.000	904.000	904.000	904.000	904.000	904.000	904.000	904.000	904.000	904.000	904.000	904.000	904.000	904.000	904.000	904.000	904.000	904.000	904.000	904.000	904.000		
SC_0	LNDWAT	10 ³ U...	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		

Note: A filter is applied to the column “Technology” to show technologies with “LND” in their name.

Fixed Cost Region, year, technology

SELECTED MODEL: CLEWs exercise

Fixed Cost

Save data | 0.0 < 0.000 > |

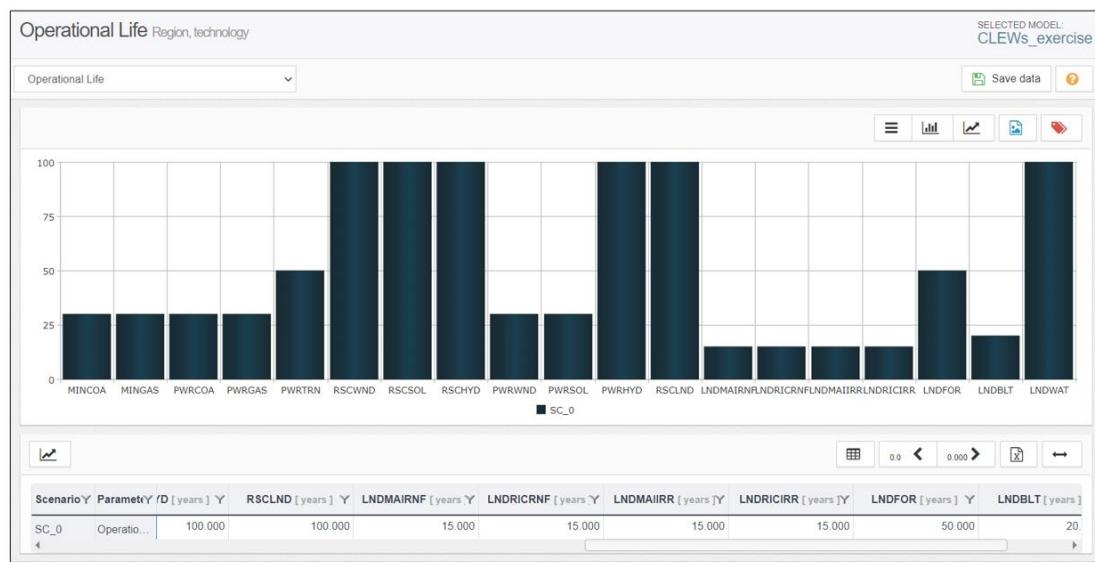
Scenario	Technology	Y	Unit	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
SC_0	RSCLND	10 ⁶ US\$	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
SC_0	LNDMAIRNF	10 ⁶ US\$	70.000	70.000	70.000	70.000	70.000	70.000	70.000	70.000	70.000	70.000	70.000	70.000	70.000	70.000	70.000	70.000	
SC_0	LNDRICRNF	10 ⁶ US\$	110.000	110.000	110.000	110.000	110.000	110.000	110.000	110.000	110.000	110.000	110.000	110.000	110.000	110.000	110.000	110.000	
SC_0	LNDMAIRR	10 ⁶ US\$	76.000	76.000	76.000	76.000	76.000	76.000	76.000	76.000	76.000	76.000	76.000	76.000	76.000	76.000	76.000	76.000	
SC_0	LNDRICIRR	10 ⁶ US\$	141.000	141.000	141.000	141.000	141.000	141.000	141.000	141.000	141.000	141.000	141.000	141.000	141.000	141.000	141.000	141.000	
SC_0	LNDFOR	10 ⁶ US\$	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
SC_0	LNDBLT	10 ⁶ US\$	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
SC_0	LNDWAT	10 ⁶ US\$	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	

Go to page: 1 Show rows: 20 ▾ 1-8 of 8

Note: A filter is applied to the column "Technology" to show technologies with "LND" in their name.

Variable Cost Region, year, technology, mode of operation

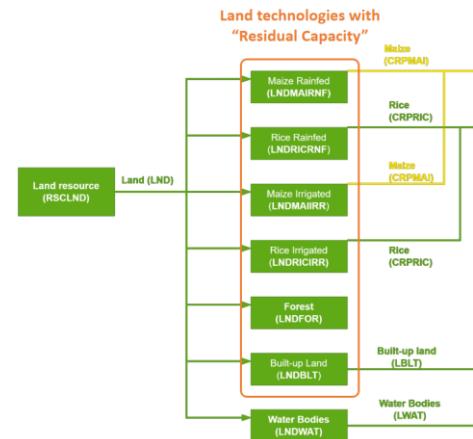
SELECTED MODEL: CLEWs exercise


Variable Cost

Save data | 0.0 < 0.000 > |

Scenario	Technology	Y	MoO	Unit	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
SC_0	RSCLND	1	10 ⁶ USD/1...	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	
SC_0	LNDMAIRNF	1	10 ⁶ USD/1...	42.0000	42.0000	42.0000	42.0000	42.0000	42.0000	42.0000	42.0000	42.0000	42.0000	42.0000	42.0000	42.0000	42.0000	42.0000		
SC_0	LNDRICRNF	1	10 ⁶ USD/1...	57.0000	57.0000	57.0000	57.0000	57.0000	57.0000	57.0000	57.0000	57.0000	57.0000	57.0000	57.0000	57.0000	57.0000	57.0000		
SC_0	LNDMAIRR	1	10 ⁶ USD/1...	53.0000	53.0000	53.0000	53.0000	53.0000	53.0000	53.0000	53.0000	53.0000	53.0000	53.0000	53.0000	53.0000	53.0000	53.0000		
SC_0	LNDRICIRR	1	10 ⁶ USD/1...	77.0000	77.0000	77.0000	77.0000	77.0000	77.0000	77.0000	77.0000	77.0000	77.0000	77.0000	77.0000	77.0000	77.0000	77.0000		
SC_0	LNDFOR	1	10 ⁶ USD/1...	-29.4000	-29.4000	-29.4000	-29.4000	-29.4000	-29.4000	-29.4000	-29.4000	-29.4000	-29.4000	-29.4000	-29.4000	-29.4000	-29.4000	-29.4000		
SC_0	LNDBLT	1	10 ⁶ USD/1...	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	
SC_0	LNDWAT	1	10 ⁶ USD/1...	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	

Go to page: 1 Show rows: 20 ▾ 1-8 of 8


Note: A filter is applied to the column "Technology" to show technologies with "LND" in their name.

2. Enter data for the parameter “**Residual Capacity**” for land technologies using the data in the CLEWs data Excel file in the sheet “4.2. Land”. Click on “**Save data**” after adding the values.

Overview of Residual Capacity assumptions

Technology	Residual Capacity (10 ³ km ²)	
	2020	Trend (2020-2035)
LNDMAIRNF	0.955	Decreases to 0 by 2035
LNDRICRNF	1.423	Decreases to 0 by 2035
LNDMAIIRR	0.079	Decreases to 0 by 2035
LNDRICIRR	0.531	Decreases to 0 by 2035
LNDFOR	253.6	Constant and equal to 2020
LNDBLT	15.0	Constant and equal to 2020
LNDWAT	25.0	Constant

Residual Capacity Region, year, technology															SELECTED MODEL: CLEWs exercise				
Scenario	Technology	Y	Unit	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
SC_0	RSCLND	10 ³ km ²	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
SC_0	LNDMAIRNF	10 ³ km ²	0.955	0.892	0.828	0.764	0.701	0.637	0.573	0.510	0.446	0.382	0.318	0.255	0.191	0.127	0.064	0.000	
SC_0	LNDRICRNF	10 ³ km ²	1.423	1.328	1.233	1.138	1.044	0.949	0.854	0.759	0.664	0.569	0.474	0.379	0.285	0.190	0.095	0.000	
SC_0	LNDMAIIRR	10 ³ km ²	0.079	0.074	0.068	0.063	0.058	0.053	0.047	0.042	0.037	0.032	0.026	0.021	0.016	0.011	0.005	0.000	
SC_0	LNDRICIRR	10 ³ km ²	0.531	0.496	0.460	0.425	0.389	0.354	0.319	0.283	0.248	0.212	0.177	0.142	0.106	0.071	0.035	0.000	
SC_0	LNDFOR	10 ³ km ²	253.600	253.600	253.600	253.600	253.600	253.600	253.600	253.600	253.600	253.600	253.600	253.600	253.600	253.600	253.600		
SC_0	LNDBLT	10 ³ km ²	15.000	15.000	15.000	15.000	15.000	15.000	15.000	15.000	15.000	15.000	15.000	15.000	15.000	15.000	15.000	15.000	
SC_0	LNDWAT	10 ³ km ²	25.000	25.000	25.000	25.000	25.000	25.000	25.000	25.000	25.000	25.000	25.000	25.000	25.000	25.000	25.000	25.000	

Note: A filter is applied to the column “Technology” to show technologies with “LND” in their name.

3. It is assumed that irrigated land cannot expand more than 5% yearly. This assumption is introduced in the parameter “**Technology Activity Increase By Mode Limit**” as a fraction of 1, i.e., a 5% limit corresponds to 0.05.

To add the parameter data, go to “**Data Entry**” and search for “**Technology Activity Increase By Mode Limit**”, and the irrigated cropland technologies LNDMAIIRR and LNDRICIRR. **Add the number for all years!**

Technology	Technology Activity Increase By Mode Limit (2020 – 2035)
LNDMAIIRR	0.05
LNDRICIRR	0.05

4. “Save data” to save your edits.

Technology Activity Increase By Mode Limit																			
Scenario	Technology	Y	MoO	Unit	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2035
SC_0	LNDMAIIRR	1	%/100	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.	
SC_0	LNDRICIRR	1	%/100	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.	

Note: A filter is applied to the column “Technology” to show technologies with “IRR” in their name.

5. The investments in the first year (2020) should be restricted so that there is no investment in that year. To do so, go to “**Data entry**” and search for the parameter “**Total Annual Max Capacity Investment**”. In the irrigated cropland technologies, set the investments to “0” in the first year (2020). Do not change values for the other years.

Total Annual Max Capacity Investment																			
Scenario	Technology	Y	Unit	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
SC_0	LNDMAIIRR	10 ³ km ²		0.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	
SC_0	LNDRICIRR	10 ³ km ²		0.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	999.000	

6. **DO NOT FORGET TO SAVE YOUR MODEL!**

Activity 3 – Running the Model

This is the first time running the model containing both the energy system and the **full representation of the land system (before interlinkages)** of the CLEWs model.

NOTE: Refer back to the previous hands-on if you have forgotten how to view results.

In this activity, you should explore the results for **these variables**:

1. **Use by Technology By Mode:** This shows the use of input commodities to a technology by mode of operation. The results inform on the amount of land resource used by the different land covers – you can also view '**Total Capacity by Technology**'.
2. **Production By Technology By Mode:** Shows the number of outputs produced by technology. This exercise provides information on the volume of crops (MTon) produced by cropland technologies (rainfed and/or irrigated).
3. **Capital Investment:** The total investment in every single year – you can also view '**Annualised Investment Costs**'.
 - a) Add *Tech Desc* to columns and remove *Tech* – **this is not necessary; it just makes your graphs look better.**
 - b) Filter (using field settings) **case**, to view **only HO7_A3**.