No	Kegiatan (Pembacaana tau Interpretasi EKG)
I.	ALAT DAN BAHAN
1	Bolpoin
2.	Kertas kosong satu lembar
3.	Hasil rekaman EKG
4.	Buku dokumentasi
II.	INSTRUKSI KERJA
1.	Pasien diminta rileks menunggu hasilnya
2.	Tulis tanggal, nama, usia, jenis kelamin, keluhan, tekanan darah, dan obat yang digunakan
3.	Identifikasi kurva EKG, ada berapa sadapan yang terekam. Rekaman dasar ada 12
	sadapan yaitu: Lead I, Lead II, Lead III, aVR, aVL, aVF, V1, V2, V3, V4, V5, dan
	V6.
4.	Identifikasi gambaran kurva EKG baik atau tidak seperti (adanya gambaran trilling/
	kurva tidak ada gelombang P, Q, R, S, T, dan U yang spesifik) dan kertasnya.
5.	Identifikasi kalibrasi yang digunakan 0,5 X, 1 X, 2X, dan atau lebih.
	Tentukan irama jantung (Rhythm):
	a. Tentukan apakah denyut jantung berirama teratur dengan cara menggunakan
	kertas kosong beri tanda antara gelombang R ke R berikutnya dan dengan geser
	ke gelombang R ke R di sadapan lainnya.
	b. Tentukan frekuensi (<i>Heart rate</i>) Penentuan frekwensi dapat dilakukan dengan
	3 cara yaitu:
	1) HR = 300 Jumlah kotak besar antara gelombang R ke R / gelombang P ke P
	2) HR = Jumlah kotak kecil antara gelombang R ke R / gelombang P ke P
6.	3) Hitung jumlah gelombang QRS dalam EKG strip sepanjang 6 detik (30
0.	kotak besar) dan hasilnya dikalikan 10. Bila ditemukan jarak gelombang
	R ke R atau gelombang P ke P ditemukan perbedaan yang signifikan atau
	irama tidak teratur, maka perlu dihitung frekuensi terpendek dan frekuensi
	terpanjang.
	c. Tentukan gelombang P (normal bila setiap gelombang P diikuti gelombang
	QRST)
	d. Tentukan interval PR (normal 0,12- 0,20 detik)
	e. Tentukan gelombang QRS (normal 0,06- 0,12 detik)
	f. Tentukan apakah semua gelombang sama dapat diketahui dengan bentuknya,
	interval tiap gelombang
	Tentukan sumbu jantung (Axis).
	Penghitungan sumbu jantung yang mudah digunakan dengan
7.	melihat titik potong dari gelombang QRS di lead I dan aVF.
	Pertama hitung tinggi gelombang QRS pada lead I kemudian
	pada aVF, setelah ketemu nilainya tentukan titik pada sumbu
	X & Y sesuai nilai yang didapat. Dari kedua titik tersebut

Tentukan adanya tanda hipertropi:

8. Hipertropi atrium kanan ditandai dengan adanya gelombang P yanglancip dan tinggi, paling jelas terlihat di lead II, III, dan aVF atau gelombang P bifasik dominan defleksi positif di V1.

Axis jantung berdasarkan garis imajin

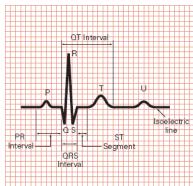
tarik garis lurus untuk menentukan titik temunya. Axis

normal bila titik temunya berada di -30 s/d 90 derajat.

No Kegiatan (Pembacaana tau Interpretasi EKG)

- b. Hipertropi atrium kiri ditandai dengan adanya gelombang P yang lebar dan berlekuk, paling jelas terlihat di lead I, II, dan aVL.
- c. Hipertropi ventrikel kanan ditandai dengan gelombang R lebih jelas dari gelombang S pada lead perikordial kanan (V1, V2, V3), atau rasio gelombang R dan S lebih dari 0,03 detik di V1. Gelombang S menetap di V5/V6, Right axis deviasi.
- d. Hipertropi ventrikel kiri ditandai dengan gelombang R pada V5/ V6 lebih dari 27 mm atau gelombang S di V1 ditambah gelombang R di V5/ V6 lebih dari 35 mm, Left axis deviasi.

Tentukan adanya tanda iskemia/ infark miokard:

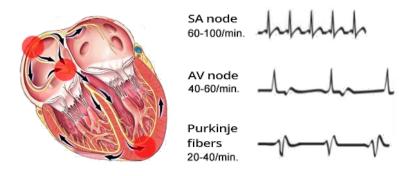

9.

10.

- a. Iskemia ditandai dengan adanya depresi segmen ST atau gelombang T terbalik
- b. Infark ditandai dengan adanya gelombang Q patologis.
- c. Infark fase akut ditandai dengan Q patologis disertai elevasi segmen ST atau hanya elevasi segmen ST saja.
 - d. Infark fase subakut atau recent ditandai dengan Q patologis disertai gelombang T terbalik.
 - e. Infark lama ditandai dengan Q patologis dan lainnya kembali normal.
 - f. Lokasi iskemia atau infark harus ditemukan di 2 tempat pasangannya.

Tentukan adanya tanda gangguan lain seperti pengaruh obat/ elektrolit:

- a. Efek obat digitalis ditemukan depresi segmen ST, interval PR memanjang, dan sinus bradikardi.
- b. Efek obat antiaritmia ditemukan Q memanjang.
- c. Efek hiperkalemi ditemukan gelombang T tinggi dan tajam, interval PR memanjang, dan bila sangat tinggi kaliumnya dapat terjadi asistole.
- d. Efek hipokalemi ditemukan depresi segment ST, interval QT memanjang, dan T rata sehingga muncul gelombag U yang nyata.
- e. Efek hiperkalsemi ditemukan interval QT dan ST memendek.
- f. Efek hipokalsemi ditemukan interval QT memanjang dan segmen ST mendatar dan bertambah lebar.

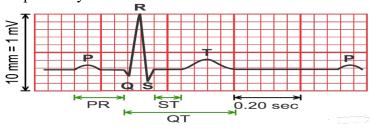


Dokumentasikan kesimpulan pembacaan EKG seperti: Irama sinus rhytm 80X/ 11. menit, normal axis. Irama sinus tachycardia 100x/ menit, LAD, LVH, Iskemia lateral.

LINK YT: https://youtu.be/vXFWemcGuSs

Catatan Materi EKG:

SA Node: 60-100x/menit	Kanan	Kiri
AV Node: 40-60x/menit	R	L
Serabut Purkinje: 20-40x/menit	N	F

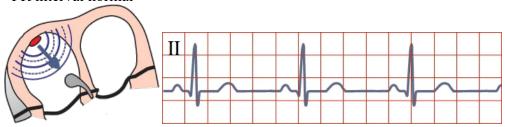

Gelombang P: <3 kotak kecil [Gelombang P: gelombang dari atrium]

PR Interval: 3-5 kotak kecil (awal P- awal QRS)

Gelombang QRS: <3 kotak kecil [Gelombang QRS: gelombang dari ventrikel]

Cara membaca EKG:

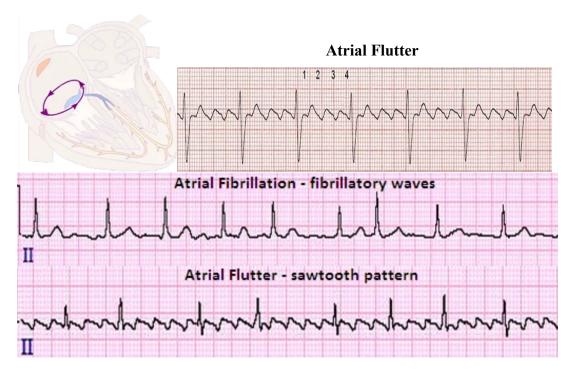
- 1. Lihat gelombang P normal atau tidak
- 2. Lihat PR interval normal atau tidak
- 3. Lihat gelombang P diikuti QRS kompleks
- 4. Lihat gelombang QRS kompleks normal atau tidak
- 5. Apakah irama sinus atau tidak
- 6. Lihat apakah irama teratur atau tidak
- 7. Hitung berapa HR nya



Nadi vs HR?

Nadi → pulsasi mekanik jantung HR → elektrik jantung

Ciri-ciri irama dari SA Node (irama sinus):

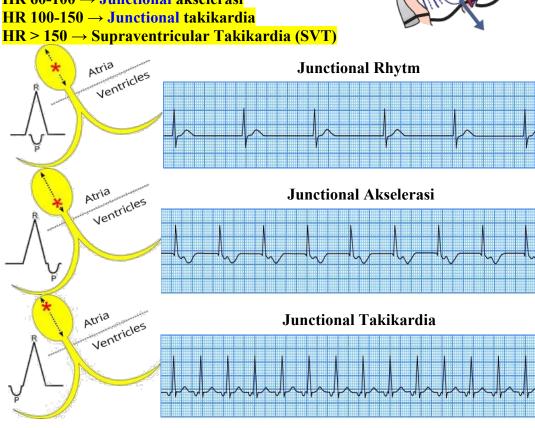

- 1. Ada gelombang P normal
- 2. Adanya gelombang QRS kompleks normal
- 3. Ada gelombang T
- 4. PR interval normal

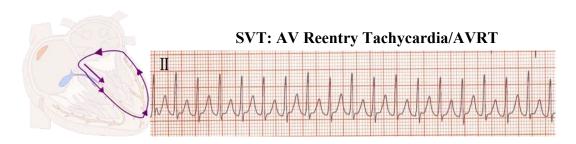
Irama dari otot atrium [= atrial...]

- 1. Gelombang P banyak / tidak bisa diidentifikasi
- 2. QRS sempit

Irama tidak teratur / gelombang P tidak teratur → atrial fibrilasi Irama teratur / gelombang P teratur → atrial flutter

Irama dari AV node [= Junctional...]

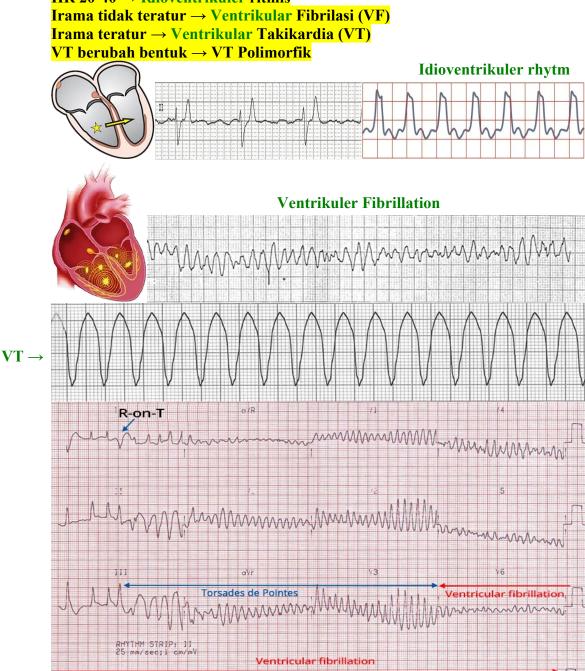

1. Gelombang P tidak ada / gelombang P terbalik ke bawah / gelombang P berada di belakang QRS

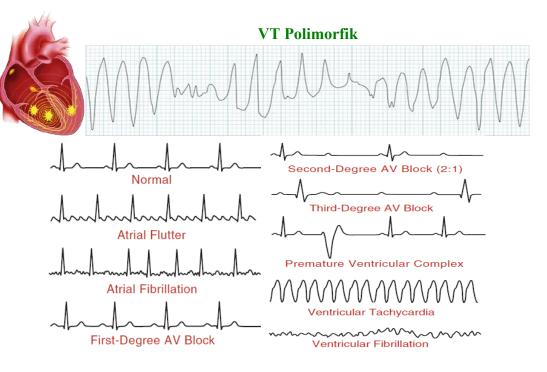

2. QRS sempit

3. Irama teratur

HR 40-60 → Junctional rhytm

HR 60-100 → Junctional akselerasi





Irama dari ventrikel [= Idioventrikuler... / Ventrikular...]

- 1. Tidak ada gelombang P
- 2. QRS lebar

HR 20-40 → Idioventrikuler ritmis

2.26 Mendengarkan Suara Jantung

Mendengarkan suara jantung merupakan salah satu pengkajian pada system kardiovaskuler. Pengkajian ini mempunyai tujuan untuk mengetahui gangguan yang terjadi dan mengidentifikasi kemungkinan penyebab yang terjadi.

- 1. Diafragma untuk mendengarkan suara yang bernada tinggi seperti S1, S2. Bell untuk mendengarkan suara yang bernada rendah seperti S3, S4.
- 2. Bunyi jantung 1 berasal dari penutupan katup mitral dan trikuspidalis. Merupakan bunyi jantung sitolik yang nenunjukkan bunyi jantung normal.
- 3. Bunyi jantung 2 berasal dari penutupan katup aorta dan pulmonalis. Merupakan bunyi jantung diastolik yang menunjukkan bunyi jantung normal.
- 4. Bunyi jantung 3 merupakan bunyi jantung gallop, terjadi akibat pengisian darah ke ventrikel yang terlalu cepat. Bunyi S3 terdengar segera setelah S2. S3 normal bila ditemukan pada pada anak dan dewasa muda.
- 5. Bunyi jantung 4 merupakan bunyi jantung gallop yang terjadi karena kontraksi atrium dan ventrikel membesar yang terdengar segera sebelum S1.
- 6. Murmur merupakan bunyi turbulensi aliran darah akibat penyempitan katup/ katup tidak optimal sehingga terjadi kebocoran. Split

No	Kegiatan (Mendengarkan Suara Jantung)
I.	ALAT DAN BAHAN
1	Stetoskop yang mempunyai sisi diafragma dan bel. (Kalau perlu mempu

- 1. Stetoskop yang mempunyai sisi diafragma dan bel. (Kalau perlu mempunyai dua selang penghantar).
- 2. Senter/ lampu meja (bila perlu)
- II. INSTRUKSI KERJA
- 1. Identifikasi identitas pasien dan keluhan pasien
- 2. Jaga privasi pasien dan usahakan ruangan untuk pemeriksaan tenang