মাধ্যমিক বিজ্ঞান

বাস্থবিক মডেলগুলি ব্যবহার করা: দশম শ্রেণিতে প্রবাহী তড়িৎ বিষয়ে শিষ্ণণ

Using physical models: teaching electricity to Class X

TESS-रेन्डिय़ा (िष्ठात এডूक्मन श्र्वः श्रून (वम्रह माभार्षः) - এत नक्षा रन निक्षार्थी-(कन्त्रिक, अः मश्चरनभूनक भन्धाः भन्न छन्नि निक्षकरणत मश्चर्या कतात छन्। अपिन अपूर्विकाना तिरामार्भम (OERs)- अत मन्मप्रश्चिति माधार्म छात्राज्य अपिन अवः माधार्मिक निक्षकरणत (भिक्षकरणत तिर्माण्या केता अपिन करा। प्राप्तिक प्राप्तिक प्राप्तिक प्राप्तिक करा। TESS-रेन्डिय़ा OERs निक्षकरणत श्रूलत भार्या विश्वार्य प्राप्तिक प्राप्तिक विश्वार विश्वार प्राप्तिक विष्ण्या विश्वार वि

ভারতীয় পাঠ্যক্রম এবং প্রসঙ্গগুলির জন্য TESS-ইন্ডিয়া OERs সহযোগীতামূলক ভাবে ভারতীয় এবং আর্ব্রজাতিক লেখকদের দ্বারা লেখা হয়েছে এবং এটি অনলাইনে এবং ছাপার ব্যবহারের জন্য উপলব্ধ আছে (http://www.tess-india.edu.in/)। OERs অনেক সংস্করণে পাওয়া যায়, এগুলি ভারতের প্রত্যেক অংশগ্রহণকারী রাজ্যের জন্য উপযুক্ত এবং স্থানীয় প্রয়োজনীয়তা এবং প্রসঙ্গ পূরণ করতে OERsকে ব্যবহারকারীদের গ্রহণ এবং স্থানীয় ভাষায় অনুবাদ করতে আমন্ত্রণ করা হয়।

TESS-रेन्डिय़ा पि अपन रेडेनिर्छापिष्टि UK घाता भतिठालिङ এवः UK मतकात आर्थिक विनित्यांभ करतिए।

ভিডिও সম্পদসমূহ

এই ইউনিটে কিছু কার্যক্রমের সঙ্গে নিম্নালিখিত আইকনগুলি আছে: এর অর্থ হল যে নির্দিষ্ট শিক্ষাদান সংক্রান্ত খিমের জন্য TESS-ইন্ডিয়া ভিডিও সম্পদসমূহ দেখা আপনার পক্ষে সহায়ক হবে।

TESS-रेन्डिय़ा छििउ मम्भपमम् छात्राज्य त्यानिक्यः विविध भ्रकात्तत्र भित्राभिष्ठाः मून भियापानमः क्रान्य क्वीमनशिन हिि करत। व्यासता व्यामा कित प्रश्चिन व्यापनात्क व्याप्तम् हिं वित्य भित्रीया कर्ति प्राध्या कर्ति । प्रश्चित उत्ति वित्य भित्रीया कर्ति प्राध्या व्यापनात्व व्यापन्य व्यापनात्व व्यापनात्व व्यापन्य व्यापन्य व्यापन्य व्यापन्य व्यापन्य व्याप

TESS-ইন্ডিয়া ভিডিও সম্পদগুলি অনলাইনে দেখা যায় বা TESS-ইন্ডিয়া ওয়েবসাইট, (http://www.tess-india.edu.in/) থেকে ডাউনলোড করা যায়। অন্যখায় আপনি একটি সিডি বা মেমরি কার্ডে ভিডিওগুলি পেতে পারেন।

সংস্করণ 1.0 SS10v1 West Bengal

তৃতীয় শ্চের উ ।দানগুলি বা অন্যর্খায়বর্ণিত না হলে এই সামগ্রী িএক ক্রির্মটে কমনস অ্যাট্রিবিউশন-শ্রয়শারঅ্যালাইক লাইসেন্সের অধীনে উ লব্ধ: http://creativecommons.org/licenses/by-sa/3.0/

এই ইউनिটের বিষয়বস্ত

মাঝে মাঝে বিজ্ঞানকে 'কঠিন' বিষয় বলে বর্ণনা করা হয়ে থাকে। মাধ্যমিক স্কুলের শিক্ষার্থীদের বিজ্ঞানে সাফল্য পেতে হলে তাদের গণিতে দক্ষ হতে হবে, কিছু তথ্য মুখস্ত করতে হবে, বিমূর্ত ধারণাগুলি বুঝতে হবে এবং সেই সঙ্গে বিভিন্ন মডেলের ব্যবহার জানতে হবে। শিক্ষকরা শিক্ষার্থীদের কাছে নিজের সুগঠিত অভিজ্ঞতা বর্ণনা করেন যা তাদের বোধের বিকাশ সহায়ক হয় ও সঠিক মানসিক মডেল গঠন করতে সাহায্য করে। এই ধরণের মডেলগুলি কার্যকরতাবে তথ্য ও ধারণা বুঝতে শিক্ষার্থীদের সক্ষম করে তোলে যাতে তারা সেগুলি কেবল মনেই রাখে না, কিন্তু সেগুলিকে যখাযখভাবে প্রয়োগও করে।

আপনার শিক্ষার্থীদের অত্যাধুনিক মানসিক মডেল গড়ে ভুলতে সাহায্য করার একটি উপায় হল ভৌত মডেল ব্যবহার করা। বিভিন্ন বস্তুগুলিকে একটু আধটু পরিবর্তনের মধ্য দিয়ে ভৌত মডেল গুলি শিক্ষার্থীর এমন বোধের বিকাশ ঘটাতে পারে যাতে কোনো বিষয় বা ধারনার প্রকাশ ঘটে।। তারা বিভিন্ন জিনিস ও মডেলগুলি নাড়াচাড়া করার ফলে একটি পাঠ্য বই পড়ে অথবা একটি দ্বি-মাত্রিক ছবি দেখে তাদের যে ধারনা সৃষ্টি হয় এটি তার চেয়ে অনেক বেশি ধারনা প্রদান করে। ব্যবহারিক মডেলের সাহায্যে, শিক্ষার্থীরা বৈশিষ্ট, নকশা এবং সম্পর্কগুলি খুঁজে নিতে পারে, এবং অনুমান করতে পারে। বিভিন্ন মডেলের সুবিধা ও সীমাবদ্ধতার মূল্যায়ন করাও তাদের শিখতে হবে।

এই বিভাগটির লক্ষ্য হবে শিক্ষার্থীদের তড়িৎ সম্পর্কে বুঝতে ব্যবহারিক মডেল ব্যবহার করার উপর জোর দেওয়া। ব্যবহারিক মডেল সম্পর্কে আপনি যা শিখবেন সেটা অন্যান্য বিষয়ের ক্ষেত্রেও প্রযোজ্য হবে। শিক্ষার্থীদের মানসিক মডেল গড়ে তুলতে সাহায্য করার ব্যাপারে আপনি TESS-ইন্ডিয়ার অন্য একটি বিভাগে আরও জানতে পারবেন।

এই ইউনিটে আপনি কী শিখতে পারেন

- মডেল-এর ধরণ ও উপমাগুলি, এবং ভাল মডেল-এর বৈশিষ্ট্য।
- তডিৎ সম্পর্কে পডানোর সময় ব্যবহার করা কিছু ব্যবহারিক মডেল-এর সুবিধা ও সীমাবদ্ধতাগুলি।
- আপনার শিক্ষার্থীদের ভড়িৎ সম্পর্কে আরও ভাল করে বুঝতে সাহায্য করার জন্য ব্যবহারিক মডেল ব্যবহার করার কিছু পন্থা।

কেন এই দৃষ্টিভঙ্গীটি গুৰুত্বপূৰ্ণ

বহু শিক্ষার্থী তড়িৎ-কে একটি কঠিন চ্যালেঞ্জিং বিষয় বলে মনে করেন। এর একটি কারণ হল তড়িৎ সম্পর্কিত কিছু বিমূর্ত ধারণা এবং বিষয় যা থালি চোথে দেখা যায় না, যেমন, আধান এবং ইলেক্ট্রন।

ব্যবহারিক মডেল ও সাদৃশ্যগুলি বিমূর্ত ধারণাগুলিকে একত্রিত করে শিখতে সাহায্য করতে পারে এগুলির মাধ্যমে:

- একটি বস্তু অথবা পদ্ধতি যা তারা সহজে সরাসরি দেখতে পায় না সেটিকে দৃষ্টিগোচর করতে শিক্ষার্থীদের সাহায্য করা
 (উদাহরণস্বরূপ, যেহেতু বস্তুটির আকার অথবা পদ্ধতিটির সময়সীমা অত্যন্ত দীর্ঘ অথবা অত্যন্ত সংক্ষিপ্ত)
- জটিল পরিস্থিতিকে সহজ করা
- ধারণাগুলিকে আরও বেশি করে মলে রাখার অথবা একটি ব্যবস্থার অংশগুলি অল্বেষণ করার জন্য শিক্ষার্থীদেরকে বস্তুগুলি
 নিপুণভাবে ব্যবহার করতে দিয়ে
- মডেলটি যেই বস্তুর প্রতিনিধিত্ব করে সেটি কীভবে কাজ করে সেটা শেখার জন্য শিক্ষার্থীদের মডেলটি নিপুণভাবে ব্যবহার করতে দেওয়া

ব্যবহারিক মডেল-এর দ্বারা তড়িৎ পড়ালে সেটা শিক্ষার্থীদের ধারণাগুলি যাচাই করতে, পূর্বাভাস দিতে এবং কার্যকর মানসিক মডেল গড়ে তুলতে সক্ষম করে।

মডেল ও তার সাদৃশ্য উভয়েরই নিজম্ব সুবিধা ও সীমাবদ্ধতা আছে। একটি মডেল যা কোন একটি পরিপ্রেক্ষিতে কার্যকরী হলেও সেটি অন্য পরিপ্রেক্ষিতে যথাযথ নাও হতে পারে। 'সঠিক' মডেল শিক্ষাকে সাহায্য করে, কিন্তু 'ভুল' মডেল শিক্ষায় বাধা তৈরি করে। বৈদ্যুতিক সার্কিট-এর ব্যবহারিক মডেলের মূল্যায়ন করার সঙ্গে ব্যবহারিক একটি ভাল মডেল-এর বৈশিষ্ট্য সম্পর্কে চিন্তা করা জড়িত থাকে। এটির সঙ্গে সার্বিকভাবে বৈজ্ঞানিক অনুসন্ধান সম্পর্কিত, শুধু মাত্র তিডিৎ নয়।

1 তড়িৎ সম্পর্কে শিক্ষার্থীদের কোন জিনিসটি কঠিন লাগে?

সংশ্লিষ্ট বিমূর্ত প্রকৃতির ধারণাগুলি ছাড়াও, এমনও সম্ভব হতে পারে যে, প্রতিদিনের অভিজ্ঞতা থেকে তড়িৎ সম্পর্কে শিক্ষার্থীরা ভুল ধারণা গড়ে তোলে। যেমন, অল্পবয়সী শিক্ষার্থীরা দেখে যে, একটি বৈদ্যুতিক যন্ত্র বিদ্যুৎ সরবরাহের সঙ্গে একটি মাত্র কেবল ও প্লাগ-এর সাহায্যে সংযুক্ত করা আছে, অখচ তাদের পড়তে হয় যে যন্ত্রটির কাজ করার জন্য এর ভিতরে একটি সম্পূর্ণ সার্কিট থাকতে হবে।

গবেষণা দেখিয়েছে যে, অপেক্ষাকৃত বড় শিক্ষার্থীদের মধ্যেও বৈদ্যুতিক সার্কিট সম্পর্কে ভুল ধারণা থাকা পরিচিত ব্যাপার। সারণি 1-এর উদাহরণগুলির মধ্যে এই ভুল বোঝাগুলি অন্তর্গত।

मानुषि 1 विप्राृिक वर्जनी मन्भर्त्क छून वासा।

শিক্ষার্থীর ধারণা	গৃহীত বিজ্ঞান ধারণা
ব্যাটারী তড়িৎপ্রবাহ বা আধান প্রদান করে	ব্যাটারী বিভব প্রভেদ প্রদান করে, বর্তনীতে আধান কে প্রবাহিত করার জন্য
সার্কিট-এর অংশগুলি তড়িৎপ্রবাহ কে 'খরচ করে ফেলে'	একটি শ্রেণি বর্তণীতে আগাগোড়া তড়িৎপ্রবাহ একই থাকে।ভুল ধারনাগুলিকে মোকাবিলা করার জন্য শ্রেষ্ঠ পন্থা হল একটি ল্যাম্প-এর দুদিকেই অ্যামমিটার রিডিং একই থাকে, এই বিকল্প প্রমাণটি দেখানো, কিন্তু কিছু শিক্ষার্থী তাদের ধারণাটি তখনও ধরে বসে থাকতে পারে।

বিভব ও তড়িৎপ্রবাহ অথবা তড়িৎপ্রবাহ ও শক্তির মধ্যে পার্থক্য বুঝতে কিছু শিক্ষার্থীর পক্ষে অসুবিধা হতে পারে।

কিছু শিক্ষার্থীর পক্ষে, সহজ, আপাত সরল বর্তণী চিত্রের সঙ্গে তাদের কাজ করা কিছু সার্কিটের তারের গুচ্ছ ও অংশগুলির সম্পর্ক স্থাপন করা কঠিন হয়ে ওঠে। এমন বহু বর্তণী আছে যেগুলি তৈরি করা দেখলে অনেক কিছু বুঝতে হয়। গুরুত্বপূর্ণ বিবরণগুলি খুঁজে পেতে আপনার শিক্ষার্থীরা অসুবিধা বোধ করতে পারে যদি না আপনি তাদের ব্যাখ্যা করে দেন যে, কোনটা কোখায় সংযুক্ত করা আছে, সেগুলি শ্রেণি-সমবায়ে সংযুক্ত করা আছে না সমান্তরাল-সমবায়ে, ইত্যাদি।

কেস স্টাডি 1: তড়িৎ সম্পর্কে পড়ালোর সময় সামনে আসা অসুবিধাগুলি

একটি সাম্প্রতিক প্রশিষ্ণণ অনুষ্ঠানে, শ্রীমতি রাখী কিছু জিনিস সম্পর্কে অবহিত যেগুলি তড়িৎ পড়ার সময় বহু শিষ্কার্খীর ষ্ণেত্রে অসুবিধাজনক ও বিত্রান্তিকর হয়ে থাকে।

প্রশিক্ষণ অনুষ্ঠানে আমরা কিছু সমস্যার উদাহরণ নিয়ে আলোচনা করি যেগুলি ভড়িৎ পড়ার সময় বহু শিক্ষার্থীদের থাকে এবং আলোচনা করি যে পাঠগুলিভে এগুলির কয়েকটির সঙ্গে আমরা কীভবে মোকাবিলা করতে পারি। ব্যাটারী কি করে সেই ধারণাগুলি নিয়ে আমরা শুরু করি, কিন্তু সেটা খুব তাড়াতাড়ি অন্য বিদ্রান্তিকর জায়গাগুলির দিকে চলে যায়। আমি এটা আগে চিন্তা করিনি, কিন্তু আমরা যখন কথা বলতে শুরু করি তখন আমি উপলব্ধি করি যে, আমি যাদের পড়াই সেই শিক্ষার্থীদের কয়েকজনের মধ্যে আমি এই সমস্যাটি লক্ষ করেছি। তারা ভাবতো যে, ব্যাটারী আধান প্রদান করছে, এবং এটা ব্যাটারীকে করে যেতে হবে, কারণ বর্তনীর সামগ্রীগুলির ভিতর দিয়ে যখন আধান যায় তখন সেটি 'খরচ হয়ে যায়'। তারা যদি বিশ্বাস না করতো যে চার্জ ইতোমধ্যে সেখানে আছে আর ব্যাটারী বিভব পার্থক্য প্রদান করে আধান-কে চালিত করার জন্য, তাহলে একটি সুইচ টিপলেই সব কিছু মুহূর্তের মধ্যে চলে আসে কি করে? মিলিমিটার প্রতি সেকেন্ড হারে আধান প্রবাহিত হচ্ছে এই ধারণাটির কোন মানে থাকে না, যদি না আধান ইতিমধ্যেই সেখানে উপস্থিত থাকে...

ক্লাস X-এর তড়িৎ পাঠগুলিতে কিছু কিছু অসুবিধা কোখায় দেখা দিতে পারে সেই সম্পর্কে আমরা যখন কথা বলছিলাম, আমি উপলব্ধি করি যে, এই ধরণের কিছু ভুল বোঝা এবং অসুবিধা বার বার সমস্যার কারণ ঘটাতে পারে। আমার পাঠগুলি পরিকল্পনা করার সময় আমাকে সম্ভাব্য অসুবিধাগুলির কথা মনে রাখতে হবে।

চিন্তার জন্য সাম্যক বিরতি

- তড়িৎ বিষয় সম্পর্কে আপনার শিক্ষার্থীরা বিশেষভাবে অসুবিধাজনক কি পেয়েছে?
- তডিৎ পড়ানোর সময় ভুল বোঝার কোনও একটি কি আপনি লক্ষ্য করেছেন?

অ্যাক্টিভিটি 1: শিক্ষার্থীদের তড়িৎ কি ভাবে পড়াতে হবে সেটা পরিকল্পনা করা

বিশেষ পাঠগুলিতে আপনার শিষ্কার্থীরা কি ধরনের অসুবিধার সন্মুখীন হবে সেটা বিবেচনা করে এই প্রক্রিয়াটি তড়িৎ সম্পর্কে পড়ানোর পরিকল্পনা করতে আপনাকে সাহায্য করবে।

ক্লাস X-এর পাঠ্যপুস্তকের আলোচ্য-এর প্রতিটি বিভাগ দেখুন আর প্রতিটি বিভাগের অসুবিধার মূল জায়গা এবং উৎসগুলি চিহ্নিত করুন। আপনার ধারণাগুলি রেকর্ড করার জন্য সারণি 2 ব্যবহার করুন। (পরের একটি অ্যাক্টিভিটিতে এই অসুবিধাগুলি গণনা করার সম্ভাব্য কৌশল আপনি দেখবেন।)

শেষ করার পর, আপনার নোটগুলি সম্পদ 1, এর সঙ্গে তুলনা করুন,যার মধ্যে কিছু সম্ভাব্য মন্তব্য অন্তর্গত আছে।

সারণি 2 শিক্ষার্থীদের তড়িৎ কীভবে পড়াতে হবে তার পরিকল্পনা করা।

অংশ	অ্যাক্টিভিটি	পড়ানোর মূল জাগয়াগুলি/অ্যাকটিভিকটে ও স পর্কি ত পা ্য র্থেকে শিক্ষার্থীরা কী শিখুক বলে আমি চাই?	অসুবিধাগুলির উৎস?
1		তড়িৎপ্রবাহ (যা অ্যাম্পিয়ার-এ মাপা হয়) হল আধান-এর (যা কুলম্ব এককে মাপা হয়) প্রতি সেকেন্ডে প্রবাহ	আ ধান দেখা যায় না।
		অ্যামমিটার-এর দ্বারা তড়িৎপ্রবাহ মাপা হয়। প্রচলিত তড়িৎপ্রবাহ-এর প্রবাহ হল + থেকে - এ তড়িৎপ্রবাহ ও ইলেক্ট্রনের অনুপ্রবাহ পরিবাহীর মধ্যে দিয়ে প্রবাহিত হয়। তড়িৎপ্রবাহ হল তাৎক্ষণিক কিন্তু প্রবাহের গড় গতি হল প্রায় 1mm s ⁻¹	ইলেক্ট্রন-এর ধীর গতির সঙ্গে তাৎক্ষণিক তড়িৎপ্রবাহ-এর সামঞ্জস্য বিধান।
2			
3	_		
4			
5			
6			
6.1			

2 তড়িৎ সম্পর্কে শেখার সহায়তায় মডেলের ব্যবহার

বৈজ্ঞানিক ধারণাগুলি সম্পর্কে জ্ঞান ও বোঝার উন্নতি করতে শিক্ষার্থীদের সাহায্য করার জন্য শিক্ষকরা বহু ধরণের মডেল ও সেগুলির উপমা ব্যবহার করে থাকেন।

মডেল ও উপমাগুলি অপরিচিত ধারণা ও অভিজ্ঞতাগুলিকে প্রতিদিনের পরিচিত ধারণা ও অভিজ্ঞতাগুলির সঙ্গে সম্পর্কিত করে। উদাহরণস্বরূপ, বৈদ্যুতিক বর্তনী ব্যাখ্যা করতে একটি উপমা যা মাঝে মাঝে ব্যবহার করা হয়ে থাকে সেটি হল: 'পরিবাহীর মধ্যে বৈদ্যুতিক তড়িৎপ্রবাহ হল একটি নদীতে অথবা পাইপ-এর ভিতর দিয়ে জল প্রবাহিত হওয়া'।

ব্যবহারিক মডেল হল স্পর্শ করা যায় এমন আসল বস্তু যা প্রকৃতপক্ষে কোনও একটি জিনিসের অংশ অথবা ব্যবস্থার প্রতীক (চিত্র 1) হিসাবে ব্যবহৃত হয়। ধারণা, পদ্ধতি এবং সম্পর্ক ব্যাখ্যা করতে শিক্ষার্থীরা আসল বস্তুকে নিজেদের কাজে লাগায়। যেমন, একটি বৈদ্যুতিক বর্তণী-এর মধ্যে দিয়ে বিভব পার্থক্য পরিবর্তনের যে প্রভাব, তা আপনি মডেল করতে পারেন, একটি কাত করা গতিপথের উপর কতগুলি মার্বেল রেখে: যদি গতিপথটি সমতল হয় তাহলে মার্বেলগুলি গড়ায় না, কিন্তু সেটি কাত করলে মার্বেলগুলি উপর থেকে নিচে গড়িয়ে যায়। (মার্বেল হল তড়িৎপ্রবাহ আর কাত করাটা হল বিভব পার্থক্য।) যদি বিভব পার্থক্য না থাকে তাহলে বর্তণীতে কোন তড়িৎপ্রবাহ প্রবাহিত হবে না। কিন্তু আপনি যদি বিভব পার্থক্য বাড়িয়ে দেন তাহলে তড়িৎপ্রবাহ বেড়ে যাবে।

চিত্র 1 একটি শিক্ষার্থীর দল তাদের নিজেদের ব্যবহারিক মডেল তৈরি করছেন। চেন সহ পেনসিল কেসটি হল পরিবর্তনশীল রোধ-এর প্রতীক।

শিক্ষার্থীদের মডেল হিসাবে ব্যবহার করা ছাড়াও ব্যবহারিক মডেল-এ কম্পিউটার-এর সিমুলেশনগুলি অর্ব্রভুক্ত করতে পারেন। যেমন, শিক্ষার্থীরা একটি ভূমিকামূলক অ্যাক্টিভিটিতে অংশ নিতে পারে যেখানে একজন ব্যক্তি হবে ব্যাটারী এবং একটি দড়ির ফাঁস টেনে রাখবে; যখনই দলটি যোগ দেবে; চলমান দড়িটি বর্তনী-এর চলমান আধান-এর প্রতীক হবে। ইন্টারনেট-এ বহু ধরণের সিমুলেশন পাওয়া যাবে। কোন একটি ইন্টারনেট কাফেতে গিয়ে এ ধরণের কয়েকটি খুঁজে দেখার জন্য আপনি আপনার শিক্ষার্থীদের উৎসাহিত করতে পারেন।

যে কোন মডেল আপনার শিক্ষার্থীদের সঙ্গে ব্যবহার করার মূল ক্ষেত্র হবে যে, সেখানে একের সঙ্গে অপরের অ্যাক্টিভিটির পদ্ধতি থাকতে হবে। আপনি কখনই শিক্ষার্থীদের জিজ্ঞাসা করবেন না যে মডেলটি কী: আপনি এই ধরণের প্রশ্ন জিজ্ঞাসা করবেন 'মডেলের এই বৈশিষ্ট্যটি কিসের প্রতীক'? অথবা 'এই মডেলটিতে রোধ-এর প্রতীক কোনটা'? এবং শিক্ষার্থীদের তাদের ধারণা ব্যাখ্যা করতে উৎসাহিত করবেন। সাধারণ ভাবে তাদের বলে দেওয়ার থেকে তাদের যদি সম্পর্কগুলি চিহ্নিত করতে হয় তাহলে তারা আরও বেশি শিখতে পারবে।

আপনার শিক্ষার্থীদের দলবদ্ধ হয়েও কাজ করতে হবে এবং পরস্পরের সঙ্গে তাদের ধারণাগুলি আলোচনা করতে হবে। মডেল ব্যবহার করা ও সেই বিষয়ে কথাবার্তা বলা শিক্ষার্থীদের বোধ গড়ে তুলতে সাহায্য করবে, এবং আপনি যখন আপনার শিক্ষার্থীদের মন্তব্য ও আলোচনা করা শুনবেন, তাদের অসুবিধাটি ঠিক কোখায় সেটা আরও ভাল করে বুঝতে এটি আপনাকে সাহায্য করবে।

কেস স্টাডি 2: বৈদ্যুতিক সার্কিট-এর জন্য ভূমিকা ভিত্তিক মডেল

শ্রী মানব ডায়েট (DIET)-**এ** একটি প্রশিষ্ণণ অনুষ্ঠানে উপস্থিত ছিলেন এবং বৈদ্যুতিক বর্তণী-এর জন্য ভূমিকাভিত্তিক নাটক ব্যবহারের অভিজ্ঞতা অর্জন করেন। (এই উভয় মডেলের বর্ণনা আপনি সম্পদ 2-এ দেখতে পাবেন।)

গত সপ্তাহে তড়িৎ সংক্রান্ত শিক্ষা দেওয়া নিয়ে একটি প্রশিক্ষণ অনুষ্ঠানে আমি উপস্থিত ছিলাম। প্রশিক্ষক যখন বললেন যে, তড়িতের জন্য আমরা 'দড়ি মডেল' নামক একটি মডেল চেষ্টা করতে যাচ্ছি তখন আমি অবাক হয়ে গিয়েছিলাম। আমার এই মডেলটির সঙ্গে আগে পরিচয় হয়নি এবং আমি আরও বেশি অবাক হলাম যখন দেখলাম যে, এটি একটি নাটকে অংশগ্রহণ মূলক অ্যাক্টিভিটি! স্কুলে ফিরে গিয়ে আমি এটি ক্লাস X-এর শিক্ষার্থীদের সঙ্গে এটি করার চেষ্টা করলাম।

ক্লাস X-এ 50 জন শিক্ষার্থী ছিল, তাই আমি তাদের 12 জনের দুটি দল আর 13 জনের দুটি দলে ভাগ করলাম। প্রত্যেকটি দলের কাছে

একটি করে জামা শোকানোর দড়ির বৃত্ত ছিল। আমি ভাদের বললাম সেটি হাত দিয়ে হালকা করে ধরে থাকতে। একজন সেটিকে টেনে বেডাতে থাকলো।

আমি তারপর প্রতি দলের একজনের সঙ্গে আস্তে করে কখা বললাম আর তাকে দড়িটি আর একটু শক্ত করে ধরতে বললাম। যে দড়িটি টেনে বেড়াচ্ছিল তার পক্ষে টানাটা আরও শক্ত হয়ে উঠল আর যারা দড়ি ধরে ছিল তাদের হাত গরম হয়ে উঠল।

ন্ত্যাকবোর্ড-এ আমি কয়েকটি প্রশ্ন লিখলাম:

- যে দডিটি টানছে সে এই মডেলে কিসের প্রতীক?
- চলমান দড়িটি কিসের প্রতীক?
- কেউ যথন দডিটি আরও বেশি শক্ত করে ধরে তথন কি হয়? ঘটনাটি কিসের প্রতীক?
- এই মডেলটি বর্ত্তনী-এর তিডিৎপ্রবাহের প্রতীক কেমন করে বুঝব?
- এই মডেলটিতে সহায়ক বিষয়গুলি কি কি?

এই প্রশ্নগুলির উত্তর দেওয়ার জন্য আমি আমার শিক্ষার্থীদের চারটি দলে ভাগ হয়ে কাজ করতে বললাম। ভারা যখন কাজ করছিল ভখন আমি ভাদের চারপাশে ঘুরে ভাদের কথাবার্তা শুনছিলাম।

দশ মিনিট পরে, আমি কয়েকটি দলের প্রতিনিধিদের তাদের উত্তরগুলি ব্যাখ্যা করতে বললাম।

সব শেষে, আমি তাদের 12 জনের দলে ফিরে যেতে বললাম আর কাজটি আমরা আবার করলাম। এই সময়, তারা যখন দড়িটি সরাচ্ছিল, আমি প্রশ্নগুলির উত্তর দেখতে লাগলাম আর মডেলটির মূল বৈশিষ্ট্যগুলি দৃষ্টিগোচর করতে থাকলাম।

এই মডেলটির একটি ভাল জিনিস হল সব দড়ি একই সঙ্গে চলমান হতে থাকে। একটি বর্তনী-এর সমস্ত আধানও একই সঙ্গে চলমান হয়। গত বছর আমি যখন ক্লাস X-এ তড়িও পড়াই তখন এই জায়গাটি বুঝতে অনেক শিক্ষার্থীর অসুবিধা হচ্ছিল। আমি বুঝতে পারলাম যে, এর কারণ ছিল তারা তখনও মনে করত যে, ব্যাটারী থেকে আধান বেরিয়ে আসে আর বর্তনী-এর চারপাশে ঘোরে, তারা মনে করত না যে আধান সব সময় থেকে যায় আর কেবল বিভব পার্থক্য প্রয়োগ করলে সেটা চলমান হয়।

যথন কেউ দড়িটি আরও শক্ত করে ধরে সেটা একটি রোধ-এর সমতুল্য হয়। শিক্ষার্থীরা দেখে যে, দড়িটি তখনও বর্তনী-এর মধ্যে আছে, অতএব, আধান বর্তনী ছেড়ে যাচ্ছিল না, যা তাদের মধ্যে কয়েকজন মনে করতো। তার বদলে, কিছু পরিমাণ শক্তি রোধ-এর মাধ্যমে চলে যাচ্ছিল, কারণ যেসব শিক্ষার্থীরা রোধ-এর ভূমিকায় ছিল তাদের হাত গরম হয়ে যাচ্ছিল।

পুরো কাজটি করতে কেবল 20 মিনিট মত লেগেছিল কিন্তু আমি নিশ্চিত যে, সেটি আমার শিক্ষার্থীদের বৈদ্যুতিক বর্তনী আরও ভাল করে বুঝতে সাহায্য করেছিল।

চিন্তার জন্য সাম্যক বিরতি

- তড়িৎ পড়ানোর জন্য আপনি কি সাদৃশ্যগুলি ব্যবহার করেছেন? তার মধ্যে কোনটি ভাল কাজ করেছিল?
- তডিৎ পড়ানোর সম্য আপনি কি কোন ব্যবহারিক মড়েল ব্যবহার করেছিলেন? সেগুলি কি ছিল?

ভূমিকাভিত্তিক নাটকের অ্যাক্টিভিটি সম্পর্কে আরও জানার জন্য সম্পদ 2 দেখুন।

ভিডিও: গল্প বলা, গান, ভূমিকাভিত্তিক নাটক

অ্যাক্টিভিটি 2: মডেল-এর ব্যবহার

এই অ্যাক্টিভিটিটি আপনার তড়িৎ সম্পর্কে পড়ানোর পরিকল্পনা করতে সাহায্য করবে এবং মডেল কীভবে ইতোমধ্যে ব্যবহার করা হযেছে আর কোখা**য** অতিরিক্ত মডেল সাহায্যকারী হতে পারে সেটা বিবেচনা করবে।

অ্যাক্টিভিটিটি 1-এর জন্য আপনি যেই সারণিটি সম্পূর্ণ করেছিলেন সেটির প্রয়োজন হবে। সারণি 3-এ যেমন দেখানো হয়েছে, সেইভাবে সারণিটির ডান দিকে আর একটি কলাম যোগ করুন।

অধ্যায়টি আগাগোড়া আবার দেখুন এবং পাঠ্যে কোন ধরণের মডেল আর তার সাদৃশ্য ব্যবহার করা হয়েছে সেটা চিহ্নিতকরুন।

আপনার যদি মনে হয় অন্য কোনও মডেল সহায়ক হবে তাহলে সেগুলি যোগ করুন।

প্রথম সারিটি পূরণ করা হয়েছে উদাহরণ হিসাবে। সম্পদ 3-এ আপনি দড়ি মডেলটি সম্পর্কে আরও জানতে পারবেন এবং আর একটি মডেল সম্পর্কেও জানতে পারবেন, সেটির নাম 'মিষ্টি ও কাপ'।

যথন আপনি সারণিটি সম্পূর্ণ করবেন তথন আপনার নোটগুলি সম্পদ 4-এর নোট-এর সঙ্গে তুলনা করুন।

সারণি 3 পাঠ্যপুস্তক পড়ার জন্য কি ধরণের মডেল ও উপমা সাহায্য করতে পারে সেটা বিবেচনা করা।

অংশ	অ্যাক্টিভিটি	পড়ালোর মূল	অসুবিধাগুলির উৎস?	কি ধরণের মডেল অথবা
		জামগাগুলি/ অ্যাক্টিভিটি ও		উপমা <i>ব্যবহার</i> ক্রা
		সম্পর্কিত পাঠ্য থেকে শিক্ষার্থীরা		হয়েছে অথবা এথাৰে
		কী শিখুক বলে আমি চাই?		সহায়ক <i>হতে পাবে</i> ?
			/	
1	_	তড়িৎপ্রবাহ (যা অ্যাম্পিয়ার-এ মাপা	চাৰ্জ দেখা যায় না	ব্যবহার ক্রা হচ্ছে:
		হয়) হল আধান-এর (যা কুলম্ব-এ	ইলেক্ট্রন প্রবাহের দিক	বৈদ্যুতিক তড়িৎপ্রবাহ একটি
		মাপা হয়)প্রতি সেকেন্ডে প্রবাহ।	ও প্রচলিত তড়িৎপ্রবাহের	প্রবাহের মত। বর্তনী একটি
			মধ্যে বিভ্রান্তি	নিরবচ্ছিন্ন বদ্ধ পথ- কোন ছেদ
		একটি অ্যামমিটার-এর দ্বারা		প্রবাহ বন্ধ করে
		তড়িৎপ্রবাহ মাপা হয়। প্রচলিত	ইলেক্ট্রন-এর ধীর প্রবাহের	সহায়ক হতেও পাবে:
		তড়িৎপ্রবাহ-এর প্রবাহ হল + থেকে –	সঙ্গে তাৎস্কণিক	দড়ি মডেল।
		এ ভড়িৎপ্রবাহ ও ইলেক্ট্রন একই	তড়িৎপ্রবাহের সংগতি	गां न(७गा
		পরিবাহীর মধ্যে দিয়ে প্রবাহিত হয়।		
		তড়িৎপ্রবাহ হল তাৎক্ষণিক কিন্ত		
		প্রবাহের গতি হল প্রায় 1mm s ⁻¹		
2	_			_
3	_			_
4				
5			_	
			_	_
				_
	1			

3 मर्फन उ উপमान कार्यकानिजा उ मीमानक्वजा

মডেল ও উপমা ব্যবহারের কিছু সাধারণ কার্যকারিতা ও সীমাবদ্ধতা আছে। আবার প্রতিটি মডেল ও উপমার নিজস্ব কিছু কার্যকারিতাও সীমাবদ্ধতা থাকে। সীমিত পরিসরের পরিস্থিতিগুলিতে সহজ ধরণের মডেল ভাল কাজ করতে পারে এবং কোন একটি মডেল যদি কোন একটি প্রসঙ্গের জন্য যথাযথ হয়, তা আবার অন্য একটি বিষয়ে অযোগ্য বলে বর্জিত হয়ে যেতে পারে। কখনও কখনও, একটি প্রসঙ্গ বোঝাতে আপনি দুই বা তার অধিক সংখ্যার মডেল ব্যবহার করতে পারেন, যেখানে প্রতিটি মডেল আলাদা আলাদা দৃষ্টিভঙ্গিতে ব্যবহৃত হয়।

মডেল বা কোনো উপমা বেছে নেওয়াটা গুরুত্বপূর্ণ। আপনার শিক্ষার্থীরা যদি কোনো জিনিস অথবা পরিস্থিতির সঙ্গে পরিচিত না থাকে, মডেল অথবা উপমা হিসাবে সেটি আপনি ব্যবহার করবেন না, যেহেতু সেটি তাদের আরও বিপ্রান্ত করে দিতে পারে।

আপনার ব্যবহৃত মডেলের দ্বারা সৃষ্টি হওয়া সম্ভাব্য অতিরিক্ত ভুল বোঝা সম্পর্কে অবগত থাকাটাও জরুরি। আপনি শিক্ষক হিসাবে যা অপ্রাসঙ্গিক বিবরণ বলে মনে করেন, কথনও কখনও শিক্ষার্থীরা তার দ্বারা বিদ্রান্ত হয়ে যেতে পারে অথবা তারা যখন মডেলটি স্মরন করবে তথন তারা আপনার কিছু বিবরণ ভুল ভাবে প্রয়োগ করতে পারে।

উদাহরণস্বরূপ, আপনি বৈদ্যুতিক বিভব-এর মডেলের জন্য বৈদ্যুতিক বর্তনী একটি 'রোলার কোস্টার' মডেল ব্যবহার করতে পারেন। এটি এই ধারণা প্রদর্শন করে যে, নিজের থেকে গড়িয়ে যাবার আগে গাড়িকে একটি উঁচু স্থানে টেনে নিয়ে যেতে হবে, এবং সমস্থ আধান কেবল বর্তনী-এর চারপাশে ঘোরে এই ধারণাটির সঙ্গে সব গাড়ি কেবল গমন পথের চারপাশে ঘোরে এই ধারণাটি, এবং গাড়িতে আরোহণ করার পরে কেউ বার হতে পারে না, তা প্রদর্শন করে। এটি একটি উপযুক্ত মডেল হওয়া উচিত, কিল্ক এটা হতে পারে যে, আপনি যে উদ্দেশ্য নিয়ে পড়াতে চান সেটা না শিথে শিক্ষার্থীরা এটা মনে করে বসে থাকে যে, 'রোলার কোস্টার-এর প্রথম পাহাড়টি সবসময় সব চাইতে উঁচু হয়' এবং ভাবে যে আপনি যথন সার্কিট-এ এগিয়ে যাবেন তথন কম শক্তি উপলব্ধ হবে।

আপনার মডেলের ব্যবহার শিক্ষার্থীরা যে ভুল বুঝেছে সেটা আপনি তথনই জানতে পারবেন, যদি আপনি আপনার শিক্ষার্থীদের মডেলটি সম্পর্কে জিজ্ঞাসা করেন এবং তাদের ধারণা পরীক্ষার জন্য যত্ন সহকারে তাদের কথা শোনেন। আপনার শিক্ষার্থীদের রেখিচিত্র আঁকতে বলে অথবা আপনি একটি রেখিচিত্র প্রদান করেছেন সেটিতে তথ্য ও মন্তব্য যোগ করতে বলে কিছু প্রসঙ্গ বেছে নিতে পারেন। আপনি আপনার শিক্ষার্থীদের অবগতি অনুসন্ধানের বিষয়ে আরও জানতে পারবেন 'অনুধাবন অনুসন্ধান :কাজ এবং শক্তি' বিভাগটিতে এবং মূল সম্পদ 'অগ্রগতি এবং সম্পাদন মূল্যায়ন করা' তে।

অ্যাক্টিভিটি 3: একটি বৈদ্যুতিক বর্তনী-এর দুটি ভুমিকা ভিত্তিক নাটকের মডেল ভুলনা করা

এই অ্যাক্টিভিটিটি আপনাকে আপনার ক্লাসের সঙ্গে ব্যবহারিক মডেলের ব্যবহার ও মূল্যায়ন করার অভিজ্ঞতা অর্জন করার জন্য। এই অ্যাক্টিভিটির জন্য আপনার সম্পদ 2 লাগবে।

একটি শিক্ষাক্রমে বিভিন্ন বার আপনি এই দুটি মডেলের উভয়ই উপস্থাপন ও ব্যবহার করতে পারেন, একটি বিষয়ের শেষে শিক্ষার্থীদের মডেলগুলি তুলনা ও মূল্যায়ন করাটা বিশেষভাবে উপযোগী হতে পারে, কারণ সেটি শিক্ষার্থীদের তাদের অবগতি পর্যালোচনা করতে সাহাষ্য করে।

পড়ানোর আগে, মডেল দুটি সম্পর্কে তাদের খুব বেশি না জানিয়ে আপনার শিক্ষার্থীরা কি ধরনের দলে ভাগ হয়ে কাজ করবে এবং আপনি অ্যাক্টিভিটিটি কি ভাবে উপস্থাপনা করবেন সেগুলি চিহ্নিত করুন।

প্রতিটি মডেলের জন্য, আপনার শিক্ষার্থীদের আপনি যে বিষয় চিন্তা করাতে চান সেটা অন্তর্গত করে আপনাকে একটি নির্দেশাবলীর পৃষ্ঠা অথবা একটি পোস্টার দিতে হবে। শিক্ষার্থীদের প্রতিটি দলকে উভয় মডেল নিয়েই কাজ করতে দিতে হবে। কয়েকটি দল দড়ি মডেল নিয়ে শুরু করবে আর অন্য দলগুলি 'মিষ্টি' মডেল নিয়ে। এরপর আপনাকে ওদের সবাইকে খামাতে হবে যাতে তারা অন্য মডেল ব্যবহারকারী অন্য দলের সম্পদের সঙ্গে পাল্টাপাল্টি করে নিতে পারে।

দলগুলি যথন কাজ করবে তথন তাদের চারপাশে ঘুরে বেড়ান। তাদের একে অপরের সঙ্গে ধারণাগুলি ভাগাভাগি করে নিতে উৎসাহিত করুন। স্বাভাবিকের চেয়ে বেশি কথাবার্তা হওয়ার ব্যাপারে প্রস্তুত থাকুন, বিশেষ করে আপনার শিক্ষার্থীরা যদি কাজ করতে করতে বড় দলের মধ্যে জোরে কথাবার্তা বলে।

সবাই উভয় মডেল নিয়ে কাজ করার পরে, সম্পূর্ণ ক্লাসের সঙ্গে প্রশ্নগুলি নিয়ে আলোচনা করুন।

প্রতিটি মডেলের সুবিধা ও সীমাবদ্ধতা কী কী সেই বিষয়ে আপনার শিক্ষার্থীদেরকে তাদের দলের মধ্যে আলোচনা করতে বলুন। একটি সম্পূর্ণ ক্লাস হিসাবে এই ধারণাগুলি নিয়ে আলোচনা করুন।

4 সাবসংক্ষেপ

এই বিভাগটিতে আপনি কিছু কিছু জিনিসের বিষয় শিখলেন যেগুলি ভড়িৎকে একটি কঠিন বিষয় করে তোলে আর আপনি কীভবে আপনার শিক্ষা প্রদানের সহায়ক হিসাবে মডেল ব্যবহার করতে পারেন তাও শিখলেন।

বৈদ্যুতিক বর্তনী সম্পর্কে পড়ানোর প্রসঙ্গে, কেস স্টাডি 2 এবং অ্যাক্টিভিটি 3-এ একটি কৌশল নিয়ে পরীক্ষা করা হয়েছে, তা হল ভূমিকা ভিত্তিক নাটক। যদিও, মডেল ব্যবহার করার আরও বিভিন্ন পদ্ধতি আছে আর অ্যাক্টিভিটি 2-এ আপনি বহু বিষয় চিহ্নিত করেছিলেন, যেখানে মডেলের ব্যবহার শিক্ষার্থীদের অবগতির সহায়ক হতে পারে।

কোখাও কোখাও এরকম মলে করা হয় যে ক্লাস X অবধি পৌঁছে, শিক্ষার্থীদের ব্যবহারিক মডেল গড়ে তোলার চাইতে মানসিক মডেল গড়ে তোলা উচিত। যদিও, ধারনা গড়ে তোলার পদ্ধতিতে ব্যবহারিক মডেল খুবই উপকারী হয়ে থাকে এবং বিশ্ববিদ্যালয়ের শিক্ষার্থীরা পর্যন্ত ব্যবহারিক মডেল ব্যবহার করে লাভবান হন, যেমন, রসায়ণ পড়ার সময়, সমবায়তা-এর বিভিন্ন ধরন বোঝার জন্য মলিকিউল-এর মডেল তৈরি করা।

আপনার পরের শিক্ষাপ্রদান বিষয়ের জন্য, শিক্ষার্থীরা কোখায় ধারণাগত সমস্যার সন্মুখীন হতে পারে এবং কোখায় মডেলের ব্যবহার এর সহায়ক হতে পারে সেটা চিহ্নিত করুন। কোন ধরনের মডেল বা উপমাগুলি উপযুক্ত হবে সেটা বিবেচনা করুন।

আপনার সহকর্মীদের সঙ্গে আপনার অ্যাক্টিভিটিগুলির পরিকল্পনা নিয়ে আলোচনা করুন:

- আপনি কী ধরণের মডেল অথবা উপমা ব্যবহার করার পরিকল্পনা করছেন?
- মডেলটির সুবিধা কী কী আর সম্ভাব্য সীমাবদ্ধতা কী কী?
- আপনার দলের সঙ্গে এই অ্যাকিভিটিগুলি আপনি কীভবে প্রয়োগ করবেন?
- কোন বিশেষ বৈশিষ্ট্যগুলির প্রতি আপনি মনোনিবেশ করবেন?

শিক্ষাক্রমে অন্তত একটি মডেল-ভিত্তিক অ্যাক্টিভিটি অর্ন্তভুক্ত করার জন্য একটি শিক্ষাপ্রদানের পরিকল্পনা ঠিক করে ফেলুন।

সম্পদসমূহ

সম্পদ 1: তডিৎ বিষয়ে সমস্যার উৎস

এই সম্পদটি অ্যাক্টিভিটি 1-এ ব্যবহার করা হযেছে।

সার্বাণ R1.1 তড়িৎ বিষয়ে আপনার শিষ্কার্থীরা কি ধরণের সমস্যার সম্মুখীন হতে পারে?

অংশ	অ্যাক্টিভিটি	পড়ানোর মূল জামগাগুলি/অ্যাকিভিটি ও সম্পর্কিত পাঠ্য থেকে শিক্ষার্থীরা কী শিখুক বলে আমি চাই?	অসুবিধাগুলির উৎস? সম্ভাব্য ভুল বোঝা?
1		তড়িৎপ্রবাহ (যা অ্যান্পিয়ার-এ পরিমাপ করা হয়) হল আধান (যা কুলম্বে পরিমাপ করা হয়)-এর প্রবাহ প্রতি সেকেন্ড-এ। একটি অ্যামমিটার-এর দ্বারা তড়িৎপ্রবাহ মাপা হয়। প্রচলিত তড়িৎপ্রবাহ-এর প্রবাহ হল + থেকে - এ তড়িৎপ্রবাহ ও ইলেক্ট্রন একটি পরিবাহীর মধ্যে দিয়ে প্রবাহিত হয়। তড়িৎপ্রবাহ হল তাৎক্ষণিক কিন্তু প্রবাহের গতি হল প্রায় 1mm s ⁻¹	আধান দেখা যায় না ইলেক্ট্রন প্রবাহের দিক ও প্রচলিত তড়িৎপ্রবাহের মধ্যে বিদ্রান্তি ইলেক্ট্রন-এর ধীর প্রবাহের সঙ্গে তাৎক্ষণিক তড়িৎপ্রবাহের সংগতি
2	_	পরিবাহীর আগাগোড়া যে বিভব পার্থক্য থাকে তার কারণে চার্জ তার মধ্যে দিয়ে প্রবাহিত হয়। বিভব পার্থক্য = প্রতি একক চার্জ-এ সম্পন্ন করা কাজ 1 ভোল্ট = 1 জুল প্রতি কুলম্ব একটি ভোল্টমিটার ব্যবহার করে পরিমাপ করা	ব্যাটারী বিভব-এর বদলে ভড়িৎপ্রবাহ প্রদান করে ধারণাটি
3	-	সাধারণ ভাবে ব্যবহার করা অংশগুলির প্রচলিত প্রতীক	_
4	4.1	একটি পরিবাহীর জন্য ভোল্টেজ ও ভড়িৎপ্রবাহ-এর সম্পর্ক বিভিন্ন সংখ্যার সেল-এর জন্য V বনাম I এর গ্রাফ থেকে প্রাপ্ত ওহমের সূত্র	বিভব ও তড়িৎপ্রবাহ-এর মধ্যে অবশিষ্ট বিদ্রান্তি আসল সার্কিট নির্মাণ করার সঙ্গে সার্কিট চিত্রের সম্পর্ক স্থাপন করা ভোল্টমিটার ও অ্যামমিটার-এর সংযোগগুলি
	4.2	বর্তনী গঠনকারী উপাদানগুলির পরিবর্তন তড়িৎপ্রবাহকে প্রভাবিত করে। রোধ সম্পর্কে ধারণা: রোধ বাড়ালে কম তড়িৎপ্রবাহ পাও্য়া যায়।	া ব্যবহৃত হ্য়' এর সম্ভাব্য ভুল বোঝা

অংশ	অ্যাক্টিভিটি	পড়ানোর মূল জামগাগুলি/অ্যাক্টিভিটি ও সম্পর্কিত পাঠ্য থেকে শিক্ষার্থীরা কী শিখুক বলে আমি চাই?	অসুবিধাগুলির উৎস? সম্ভাব্য ভুল বোঝা?
	4.3	একটি পরিবাহীর রোধকে প্রভাবিত করার কারণগুলি রোধমাত্রা যত বাড়বে অখবা তার যত লম্বা হবে রোধ তত বাড়বে প্রস্থচ্ছেদ এলাকা যত বেশি হবে রোধ তত কমবে	সরাসরি রোধ পরিমাপ না করে তড়িৎপ্রবাহ ও আনুমানিক রোধ পরিমাপ করা। প্রস্থচ্ছেদের ক্ষেত্রফলের নিয়ম বোঝার জন্য, শিক্ষার্থীদের মনে করিয়ে দিতে হবে যে, ব্যাস দ্বিগুণ করলে ক্ষেত্রফল চতুর্গুণ হবে। সম্পর্কগুলি মনে রাখা
5	5.1	শ্রেণি-বর্তনীতে রোধ-এর জন্য: শ্রেণি বর্তণী সব জায়গায় ভড়িৎপ্রবাহ সমান; ভড়িৎপ্রবাহ রোধের - এর সার্বিক মানের উপর নির্ভর করে	
	5.2	শ্রেণি-বর্তনী রোধ-এর জন্য, সর্বমোট বিভব পার্থক্য হল প্রতিটি রোধ-এর বিভব পার্থক্য-এর যোগফল। যেহেতু V = IR, সিরিজ-এর রোধ-এর মিলিত রোধ = পৃথক পৃথক রোধ-এর যোগফল	বর্তণী চিত্রের সঙ্গে বর্তনী-এর সম্পর্ক স্থাপন করা
	5.3	সমান্তরাল তিনটি রোধ-এর জন্য, প্রতিটি রোধ-এর আড়াআড়ি ভাবে বিভব পার্থক্য আড়াআড়ি ভাবে মিলিত বিভব পার্থক্য-এর সমান সার্কিট-এর অবিভক্ত অংশের মধ্যের তড়িৎপ্রবাহ = প্রতিটি রোধ-এর মধ্যের সমষ্টিগত তড়িৎপ্রবাহ	বর্তণী চিত্রের সঙ্গে বর্তণী-এর সম্পর্ক স্থাপন করা পরিমাপ অনুসরণ করা কঠিন হতে পারে মোট রোধ নির্ণয় করার পরের অ্যাক্টিভিটি চ্যালেঞ্জিং হতে পারে; হ্রাস করা সার্বিক রোধ-এর ধারণা প্রথমেই সহজাত হয় না।
6	6.1	একটি পরিবাহীর মধ্যে দিয়ে যথন তড়িৎপ্রবাহ বহমান হয় তথন কিছু পরিমাণ শক্তি ছড়িয়ে যায় স্ক্রমতা $P=VI$ শক্তি $H=VIt$ শক্তি $H=I^2R$	
	6.2	তাপের প্রভাবের ব্যবহারিক প্রয়োগ; হিটার, টোস্টার, ফিলামেন্ট ল্যাম্প, ফিউজ ইত্যাদি	সব শিক্ষার্থী কি এই সবগুলি উদাহরণের সঙ্গে পরিচিত হবে?

বৈদ্যুতিক ক্ষমতা P = V I	শক্তি ও আধান-এর মধ্যে বিদ্রান্তি
P = V/2R	
$P = f^2 R$	
ক্ষমতা ওয়াট-এ মাপা হয়	
এনার্জির বাণিজ্যিক একক = কিলোওয়াট আওয়ার (kW h) = 3.6×10^6 জুল	
আমরা খরচ হওয়া শক্তির জন্য অর্থ প্রদান করি,	
	P = V/2R $P = f'R$ স্ক্রমতা ওয়াট-এ মাপা হয় এনার্জির বাণিজ্যিক একক = কিলোওয়াট আওয়ার

সম্পদ 2: ভূমিকা ভিত্তিক নাটক

চরিত্রাভিনয় হল যথন শিক্ষার্থীদের কাছে অভিনয় করার মত একটি চরিত্র থাকে, এবং কোন একটি ছোট দৃশ্য চলাকালীন ভারা সেই ভূমিকাটিতে কথা বলে ও অভিনয় করে, যে ভূমিকায় ভারা অভিনয় করছে সেই চরিত্রগুলির আচরণ এবং উদ্দেশ্যগুলি ভারা গ্রহণ করে। কোন চিত্রনাট্য প্রদান করা হয় না কিন্তু সেই ভূমিকাটির ভার নিতে সমর্থ হওয়ার জন্য শিক্ষকদের দ্বারা শিক্ষার্থীদেরকে পর্যাপ্ত তথ্য প্রদান করা গুরুত্বপূর্ণ। যে শিক্ষার্থীরা চরিত্রগুলি মঞ্চশ্ব করছে তাদেরকে তাদের চিন্তা প্রকাশ করতে এবং স্বতঃস্ফূর্ত বোধ করাতেও উৎসাহিত করা উচিত।

চরিত্রাভিন্মের অনেকগুলি সুবিধা আছে কারণ এটি:

- অন্য মানুষদের অনুভূতি বোঝার বিকাশ ঘটানোর জন্য বাস্তব পরিস্থিতিগুলি নিরীক্ষণ করে
- সিদ্ধান্ত গ্রহণের দক্ষতা উন্নত করে
- সক্রিয়ভাবে শেখায় শিক্ষার্থীদেরকে সংশ্লিষ্ট করে এবং সব শিক্ষার্থীদেরকে অবদান রাখতে সহায়তা করে
- উদ্ভ স্তরের ডিন্তার বিকাশ ঘটায়

চরিত্রাভিন্য অল্পবয়সী শিক্ষার্থীদেরকে বিভিন্ন সামাজিক পরিস্থিতিতে কথা বলার প্রত্যয় উন্নত করতে সাহায্য করতে পারে, উদাহরণস্থরূপ, কোন দোকানে কেনাকাটা করা, পর্যটকদেরকে স্থানীয় স্মৃতিসৌধের দিক নির্দেশ করা বা টিকিট কেনা। আপনি কিছু অবলম্বন এবং চিহ্নের সাহায্যে সহজ সরল দৃশ্য বানাতে পারেন যেমন 'কাফে', 'ডাক্তারের অস্ত্রোপচার' বা 'গ্যারেজ' আপনার শিক্ষার্থীদেরকে জিজ্ঞাসা করুন 'এথানে কে কাজ করে?' 'তারা কি বলছে?' এবং 'আমরা তাদেরকে কি জিজ্ঞাসা করছি?' এবং এই ক্ষেত্রগুলির চরিত্রে কথাবার্তা বলতে উৎসাহিত করুন এবং তাদের ভাষার ব্যবহার পর্যবেষ্ণণ করুন।

চরিত্রাভিন্য অপেক্ষাকৃত বড় শিক্ষার্থীদের জীবনমুখী দক্ষতাগুলি উন্নত করে। উদাহরণস্বরূপ, শ্রেণিকক্ষে, আপনি হয়তো অন্বেষণ করছেন কীভবে দ্বন্দের সমাধান করতে হয়। তার পরিবর্তে, আপনার বিদ্যালয় বা সম্প্রদায় থেকে একটি আসল ঘটনা ব্যবহার করুন। আপনি একটি সদৃশ কিল্ক বিচ্ছিন্ন দৃশ্যের বিবরণ দিতে পারেন যা একই সমস্যাকে অনাবৃত করে। শিক্ষার্থীদের চরিত্র নির্দিষ্ট করে দিন বা তাদেরকে নিজেদের একটি বেছে নিতে বলুন। আপনি তাদের পরিকল্পনা করার সময় দিতে পারেন বা শুধু তাৎক্ষণিকভাবে চরিত্রাভিন্য করতে বলতে পারেন। চরিত্রাভিন্য শ্রেণিকক্ষে করা যেতে পারে, বা শিক্ষার্থীরা ছোট দলে কাজ করতে পারে যাতে কোন দলকেই পর্যবেক্ষণ করা হয় না। মলে রাখবেন যে, এই অ্যাক্টিভিটিটির উদ্দেশ্য হল চরিত্রাভিনয়ের অভিজ্ঞতা এবং এটি কী প্রকাশ করে তার অভিজ্ঞতা অর্জন করা, আপনি সুদক্ষ অভিনয় বা বলিউডের নায়কের খোঁজ করছেন না।

গণিত এবং বিজ্ঞানেও চরিত্রাভিন্য ব্যবহার করা সম্ভবপর। ছাত্ররা পরমাণুর চরিত্রে অভিন্য করতে পারে, সেই কণাগুলি নিজেদের বৈশিষ্ট্যের কারণে কীভবে নিজেরদের মধ্যে আচরণ করে বা তাপ বা আলোর প্রভাব প্রদর্শনের জন্য তাদের আচরণে কি পরিবর্তন হয় সেটা দেখাতে পারে। গণিতে, শিক্ষার্থীরা কোণ এবং আকারের গুণ এবং মিশ্রণ আবিষ্কার করতে সেগুলির চরিত্রাভিন্য করতে পারে।

সম্পদ 3: বৈদ্যুতিক বর্তণী শেখানোর জন্য দুটি মডেল

এই সম্পদটি কেস স্টাডি 2-এ উল্লেখ করা হয়েছে এবং অ্যাকিভিটি 2-এ ব্যবহার করা হয়েছে।

একটি দলের কাছে সব সম্পদ ও নির্দেশাবলী থাকার পর, দুটি মডেলের প্রতিটির সঙ্গে কাজ করতে মোটামুটি পাঁচ মিনিট মত সম্য় লাগে।

লোট: এই উভয় মডেল দুটির সকল বৈশিষ্ট্য ও ক্রিয়াগুলি না জানিয়ে শিক্ষার্থীদের নির্দেশাবলী অনুসরণ করতে দিন। তাদের মনোযোগ নির্দিষ্ট করার জন্য প্রশ্নগুলি ব্যবহার করুন এবং তাদের নিজেদের উত্তরগুলি দিতে উৎসাহিত করুন।

উত্তর এবং মন্তব্যগুলি প্রতিটি মডেলের জন্য নির্দেশাবলীকে অনুসরণ করে।

মিষ্টি ও কাপ

আপনার কী প্রয়োজন

একটি প্যাকেট-এ জড়ানো মিষ্টি, দুটি বাক্স এবং ক্ষেকটি কাগজের কাপ। প্যাকেট-এ জড়ানো মিষ্টির অর্ধেক একটি বাক্সে রাখুন আর বাকি অর্ধেক অন্য বাক্সে।

এই মডেলটি ভাল কাজ করে, যদি আপনার কাছে ধরুণ 20টি মিষ্টি ও বৃত্তের মধ্যে দশজন ব্যক্তি থাকে আর এছাড়া একজন পর্যবেষ্কক এবং আর একজন থাকেন যিনি প্রশ্নগুলি পড়বেন। আপনি যদি আরও বড় দল আর আরও বেশি মিষ্টি ব্যবহার করেন, তাখলে সবকটি মিষ্টি বৃত্তের মধ্যে ঘুরতে অনেক সময় লেগে যাবে।

কী করতে হবে

छक्र क्वाव आर्था, पन (थर्क এक्জनर्क विष्ठ निन (य निर्प्रगावनी अ अञ्चछनि भर्जव।

- বৃত্তের মধ্যে একজনকে বাদ দিয়ে সকলকে নিয়ে শুরু করুন। যে বৃত্তের বাইরে থাকবে সে হল পর্যবেষ্ষক।
- একজনের কাছে অর্ধেক পরিমাণ মিষ্টির বাক্স থাকবে। প্রতি সেকেন্ড-এ একটি করে মিষ্টি তারা প্রত্যেকে তাদের ডান দিকের
 ব্যক্তিকে দেবে, যে সঙ্গে সঙ্গে সেই মিষ্টি তার ডান দিকের জনকে দেবে, আর এমন চলতে থাকবে। (বৃত্তের বাইরের কেউ যদি
 প্রতি সেকেন্ড-এ টেবিলে একটি করে টোকা মারে তাহলে সেটা সহায়ক হতে পারে।)
- ব্তের একজনের কাছে একটি কাপ থাকবে। মিষ্টি যথন আসবে, সে কাপের মধ্যে সেটা এক সেকেন্ড রেখে আবার পরের জনকে দেবে। কিছুক্ষণের মধ্যেই বাক্সের সবকটি মিষ্টি বৃত্তের মধ্যে সমান ভাবে ঘুরতে থাকবে। বাক্স হাতে ব্যক্তির বাঁ দিকে যে আছে তার পিছনে পর্যবেক্ষক দাঁড়াবে, আর যার পিছনে সে দাঁড়িয়ে আছে সে যথনই মিষ্টিটি বাক্স হাতে ব্যক্তিকে দেবে তথনই সে একটি তালি দেবে। কোন পরিবর্তন করার আগে মিষ্টিগুলিকে বেশ ক্ষেকবার ঘুরতে দিন, যাতে সবাই একটি ছন্দের মধ্যে এসে পড়ে।
- এবার দ্বিতীয় একজন ব্যক্তিকে একটি কাপ দিন। মিষ্টিগুলি যেই হারে সার্কিট-এর মধ্যে ঘুরছে (অর্থাৎ, পর্যবেক্ষক যেই হারে
 তালি দিচ্ছে) সেটার এখন কি হবে?

এবার দলের অন্য একজনকে একটি বাক্স আর বাকি মিষ্টিগুলি দিন। তারাও প্রতি সেকেন্ডে একটি করে মিষ্টি হস্তান্তর করবে,
 কাজেই এখন বৃত্তের বাকি জনকে দুজন মিষ্টিগুলি হস্তান্তর করছে, অতএব প্রতি সেকেন্ডে দুটি করে মিষ্টি হস্তান্তর করা হচ্ছে।
 এটা বৃত্তের চারপাশে মিষ্টিগুলি হস্তান্তর করার হারকে বাড়িয়ে দেয়, এবং পর্যবেক্ষক দ্বিগুণ হারে তালি দেয়।

প্রশ্ন

- যেই ব্যক্তি মিষ্টিগুলি বিলি করছে সে কিসের প্রতীক?
- মিষ্টিগুলি কিসের প্রতীক?
- কাপগুলি কিসের প্রতীক?
- মিষ্টির সঙ্গে দ্বিতীয় ব্যক্তিকে যোগ করা কিসের প্রতীক আর তার প্রতাব কি?

উত্তর ও মন্তব্য

- যেই ব্যক্তি মিষ্টি বিলি করছে সে একটি ব্যাটারী-র মত, আধানকে বর্তণী-এর চারপাশে ঠেলে দিচ্ছে। (এই মডেলটি, ভুল ভাবে এটা প্রস্তাবিত করতে পারে যে, ব্যাটারী আধান সরবরাহ করে। ব্যাটারী আধানকে কেবল চলমান করে।)
- মিষ্টিগুলি হল চার্জ আপনি দেখলেন যে সমসংখ্যক মিষ্টি ঘুরলো। মিষ্টিগুলি যেই হারে ঘুরে বেড়াচ্ছে সেটা হল তড়িৎপ্রবাহ।
 পর্যবেক্ষক যত জোরে তালি বাজাবে তড়িৎপ্রবাহ তত বেশি হবে। পর্যবেক্ষক হল একটি অ্যামমিটার্-এর মত, চার্জ-এর প্রবাহের গতি যে মাপে।
- কাপগুলি মিষ্টিগুলির প্রবাহ ধীরে করে দেয়। সেগুলি রোধ অথবা ল্যাম্প-এর ভূমিকা পালন করছে। (এথানেইশক্তি আসল সার্কিট থেকে বেরিয়ে য়য়য়, কিল্ক এই মডেলটিতে এই সংযোগটি লক্ষ্য করা শক্ত।
- মিষ্টি নিয়ে দ্বিতীয় ব্যক্তিটি হল আর একটি ব্যাটারি-র মত। আর একটি ব্যাটারি যোগ করলে তড়িৎপ্রবাহ বৃদ্ধি পায়: এখন
 মিষ্টিগুলি পর্যবেক্ষকের সামনে দিয়ে আরও তাড়াতাড়ি চলে যাচ্ছে। আরও মিষ্টি নিয়ে আরও কাউকে যোগ করার সমস্যা হচ্ছে
 যে, দেখে মনে হবে ব্যাটারী যোগ করে বোধহয় আরও আধান যোগ করা হয়েছে, যখন ঘুরে বেড়ানো আধান আসলে একই
 থাকে হবে। এটা শুধু গতিকে বৃদ্ধি করে।

<u> गिकु अनि</u>

এই মডেলটি এটা দেখাবার জন্য উপযুক্ত যে সার্কিট-এ ঘুরে বেড়ানো আধান একই থাকে। কোন মিষ্টি দল ছাড়া হয়না, আর রোধ যোগ করলে তডিৎপ্রবাহ কমে যায়।

সীমাবদ্ধতা

মডেলটি প্রস্তাব দেয় যে, আধান-এর উৎস হল ব্যাটারিগুলি এবং বর্তগী-এর ভিতরে সব আধান চলমান হতে কিছু সময় লাগে। শক্তির স্থানান্তর যথন ঘটে, মডেলটি সেটা পরিষ্কার ভাবে প্রদর্শন করে।

দডি মডেল

আপনার কী প্রয়োজন

একটি হালকা দড়ির (বড়) ফাঁস গোল করে রাখা, আদর্শভাবে প্রতি এক মিটার দূরত্বে দড়িটির উপর নকশা বা দাগ থাকবে, যাতে আপনি দেখতে পান সেটা কত তাড়াতাড়ি ঘুরছে। ফাঁসটি যত বড় হবে আপনি তত বেশি ব্যক্তিকে দলে রাখতে পারবেন ভুমিকা ভিত্তিক নাটক করার জন্য।

কী করতে হবে

শুরু করার আগে, দল খেকে একজন কে বেছে নিন যে নির্দেশাবলী ও প্রম্নগুলি পড়বে।

- দলের প্রত্যেকে এমন ভাবে গোল হয়ে দাঁড়াবে, যাতে দড়ির ফাঁসটি খুব জোরে লা টালা হয়, কিল্ফ কোন জায়গায় টিলাও লা
 হয়ে য়য়।
- একজন দড়িটি সমান ভাবে টানবে, অর্থাৎ, সমান পরিমাণে টান দিয়ে।
- বাকি সকলে দড়িটি হালকা ভাবে ধরে থাকবে যথন সেটি ঘুরবে।
- একজন বাকিজনের খেকে আরও শক্ত করে ধরে দেখবে তাতে কী হয়। দেখবেন যাতে তারা খুব শক্ত করে না ধরে, এটা কোন
 দিউ টানাটানির খেলা নয়! য়েই ব্যক্তি টানছে তাকে সমান ভাবে টানতে হবে, এবং জোরে ও আরও জোরে টানবে না।

<u> अ</u>भ

- যে দডিটি টানছে সে এই মডেলে কিসের প্রতীক?
- চলমান দডিটি কিসের প্রতীক?
- যথন কেউ দড়িটি আরও শক্ত করে ধরে, তথন সেটা কিসের প্রতীক?

উত্তর ও মন্তব্য

- যেই ব্যক্তি দড়িটি টালছে সে হল ব্যাটারী। যথন কোন ব্যক্তি দড়িটি টালে, সেটা সার্কিটকে শক্তি সরবরাহ করা হয়।
- চলমান দড়িটি হল সার্কিট-এর ভিতর দিয়ে চার্জ চলমান হওয়া।
- যথন কেউ দড়িটি আরও শক্ত করে ধরে, তারা অনুভব করে যে, তাদের হাত গরম হয়ে যাচ্ছে, আর দড়িটি টানতে আরও জোর লাগছে। অতিরিক্ত শক্ত করে ধরাটি হল বৃদ্ধি পাওয়া রোধ। ব্যক্তিদের হাত গরম হয়ে যাওয়া মানে শক্তি সার্কিট থেকে স্থানান্তরিত হয়ে যাচ্ছে। যে ব্যক্তি দডিটি ধরে আছে সে হল একটি বাল্প অথবা একটি রোধ-এর মত।

শক্তিগুলি

এই মডেলটি প্রদর্শন করে যে আধান বর্ত্তনী-এর মধ্যে একসঙ্গে চলমান হচ্ছে, এবং সেটি রোধ ও শক্তি স্থানান্তরের মধ্যে একটি সংযুক্তি রচনা করছে।

সীমাবদ্ধতাগুলি

যেই ব্যক্তি দড়িটি টানছে সে যদি আরও জোরে টানতে শুরু করে, যখন অন্য কেউ দড়িটি আরও শক্ত করে ধরে আছে, সেটা এই প্রস্তাব দিতে পারে যে যখন রোধ বেড়ে যায় তখন তড়িৎপ্রবাহকে এক রাখার জন্য ব্যাটারীকে আরও বেশি করে কাজ করতে হয়।

সম্পদ 4: তড়িৎ পড়ানোর জন্য মডেল ও সাদৃশ্য ব্যবহার করা

এই সম্পর্দা **অ্যাকিভিত্তি** 2-এ ব্যবহার করা হয়েছে। সারণি R4.1-এ ব্যবহৃত মডেল ও সাদ্শ্যগুলিকে চিহ্নিত করে এবং অন্য মডেলের কিছু প্রস্তাব শ্রদ্য শ্র্যগুলি সহায়ক হতে পারে।

मात्रिंग R4.1 ७५ि९ भुजालात अन्य मर्फन ३ मापृग्य व्यवशत कता।

অংশ	অ্যাক্টিভি টি	পড়ানোর মূল জামগাগুলি/অ্যাক্টিভিটি ও সম্পর্কিত পাঠ্য থেকে শিক্ষার্থীরা কী শিখুক বলে আমি চাই?	অসুবিধাগুলির উৎস?	কি ধরণের মডেল অথবা সাদৃশ্য ব্যবহার করা হয়েছে অথবা এথানে সহায়ক হতে পারে?
1		তড়িৎপ্রবাহ (যা অ্যাম্পিয়ার-এ মাপা হয়) হল চার্জ-এর (যা কুলম্ব মাপা হয়) প্রতি সেকেন্ডে প্রবাহ। একটি অ্যামমিটার-এর দ্বারা তড়িৎপ্রবাহ মাপা হয়। প্রচলিত তড়িৎপ্রবাহ-এর প্রবাহ হল + থেকে - এ তড়িৎপ্রবাহ ও ইলেক্ট্রন একই পরিবাহীর মধ্যে দিয়ে প্রবাহিত হয়। তড়িৎপ্রবাহ তাৎক্ষণিক কিন্তু বহমান গতি প্রায় 1 mm s ⁻¹		ব্যবহার করা হচ্ছে: বৈদ্যুতিক তড়িৎপ্রবাহ একটি প্রবাহের মত সার্কিট একটি নিরবচ্ছিন্ন বদ্ধ পথ- বর্তনী কোন বিরতি প্রবাহ বন্ধ করে সহায়ক হতেও পারে: দড়ি মডেল
2		পরিবাহীর আগাগোড়া যে বিভব পার্থক্য থাকে তার কারণে চার্জ তার মধ্যে দিয়ে প্রবাহিত হয়। বিভব পার্থক্য = প্রতি একক চার্জ-এ করা কাজ 1 ভোল্ট = 1 জুল প্রতি কুলম্ব, যা ভোল্টমিটার্-এর দ্বারা পরিমাপ করা হয়।		
3	-	সাধারণ ভাবে ব্যবহৃত উপাদানগুলির প্রচলিত প্রতীক।		_

অংশ	অ্যাক্টিভি টি	পড়ানোর মূল জামগাগুলি/অ্যাক্টিভিটি ও সম্পর্কিত পাঠ্য থেকে শিক্ষার্থীরা কি শিখুক বলে আমি চাই?	অসুবিধাগুলির উৎস?	কি ধরণের মডেল অথবা সাদৃশ্য ব্যবহার করা হমেছে অথবা এথানে সহামক হতে পারে?
4	4.1	একটি পরিবাহীর জন্য ভোল্টেজ ও তড়িৎপ্রবাহ-এর সম্পর্ক। বিভিন্ন সংখ্যার সেল-এর জন্য V বনাম । এর গ্রাফ থেকে প্রাপ্ত ওহমের সূত্র	ভোল্টেজ ও ভড়িৎপ্রবাহ- এর মধ্যে অবশিষ্ট বিদ্রান্তি আসল সার্কিট নির্মাণ করার সঙ্গে সার্কিট চিত্রের সম্পর্ক স্থাপন করা ভোল্টমিটার ও অ্যামমিটার-এর সংযোগগুলি	
	4.2	গঠনকারী অংশগুলির পরিবর্তন তড়িৎপ্রবাহকে প্রভাবিত করে। রোধ সম্পর্কে ধারণা: রোধ বাড়ালে কম তড়িৎপ্রবাহ পাওয়া যায়।	'ভড়িৎপ্রবাহ গঠনকারী অংশগুলির দ্বারা ব্যবহৃত হয়' এই সম্ভাব্য ভুল বোঝা পাঠ্য আলোচনায় ব্যবহার করা একটি পরিবাহীর মধ্যে দিয়ে প্রবাহিত ইলেক্ট্রন-এর মানসিক মডেল	সহায়ক হতে পারে: দড়ি মডেল, মিষ্টি মডেল
	4.3	একটি পরিবাহীর রোধকে প্রভাবিত করার কারণগুলি রোধমাত্রা যত বাড়বে অথবা তার যত লম্বা হবে রোধ তত বাড়বে প্রস্থচ্ছেদ এলাকা যত বেশি হবে রোধ তত কমবে	সরাসরি রোধ পরিমাপ না করে তড়িৎপ্রবাহ ও আনুমানিক রোধ পরিমাপ করা প্রস্থচ্ছেদের ক্ষেত্রফলের নিয়ম প্রাপ্ত করার জন্য, শিচ্চার্থীদের মনে করিয়ে দিতে হবে যে, ব্যাস দ্বিগুণ করাল ক্ষেত্রফল চতুর্প্রণ করা হবে সম্পর্কগুলি মনে রাখা	অভিনয় করে দেখানো যেতে পারে?)

অংশ	অ্যাক্টিভি টি	পড়ানোর মূল জামগাগুলি/অ্যাক্টিভিটি ও সম্পর্কিত পাঠ্য থেকে শিক্ষার্থীরা কি শিখুক বলে আমি চাই?	অসুবিধাগুলির উৎস?	কি ধরণের মডেল অথবা সাদৃশ্য ব্যবহার করা হমেছে অথবা এথানে সহায়ক হতে পারে?
	5.1	শ্রেণি-সমবায় রোধ-এর জন্য: শ্রেণি সার্কিট-এর যে কোন স্থানে তড়িৎপ্রবাহ সমান হয়। তড়িৎপ্রবাহ রোধ-এর সার্বিক মানের উপর নির্ভর করে	'ভড়িৎপ্রবাহ খরচ হয়ে	সহা য়ক হতে পারে: মিষ্টি মডেল
	5.2	সিরিজ-এ রোধ-এর জন্য: মোট বিভব পার্থক্য হল প্রতিটি রোধ- এর ভিতরের বিভব পার্থক্য-এর যোগফল। যেহেতু V = IR, সিরিজ-এর রোধ-এর মিলিত রোধ = পৃথক পৃথক রোধ-এর যোগফল		
	5.3	সমান্তরাল-সমবায় তিনটি রোধ- এর জন্য: প্রতিটি রোধ-এর বিভব পার্থক্য তাদের মিলিত বিভব পার্থক্য-এর সমান সার্কিট-এর অবিভক্ত অংশের মধ্যের তড়িৎপ্রবাহ = প্রতিটি রোধ-এর মধ্যের সমষ্টিগত তড়িৎপ্রবাহ		• • • • • • • • • • • • • • • • • • • •

অংশ	অ্যাক্টিভি টি	পড়ানোর মূল জামগাগুলি/অ্যাক্টিভিটি ও সম্পর্কিত পাঠ্য থেকে শিক্ষার্থীরা কি শিখুক বলে আমি চাই?	অসুবিধাগুলির উৎস?	কি ধরণের মডেল অথবা সাদৃশ্য ব্যবহার করা হয়েছে অথবা এথানে সহায়ক হতে পারে?
6	6.1	একটি পরিবাহীর মধ্যে দিয়ে যখন তড়িৎপ্রবাহ বহমান হয় তখন কিছু পরিমাণ শক্তি ছড়িয়ে যায়		সহায়ক হতে পারে: দড়ি মডেল
	6.2	ভাপের প্রভাবের ব্যবহারিক প্রয়োগ; হিটার, টোস্টার, ফিলামেন্ট ল্যাম্প, ফিউজ ইত্যাদি	সবগুলি উদাহরণের সঙ্গে	
		বৈদ্যুতিক ক্ষমতা: $P = VI$ $P = V/R$ $P = I^2R$ ক্ষমতা ওয়াট-এ মাপা হয় এলার্জির বাণিজ্যিক একক = কিলোওয়াট আওয়ার (kW h) = 3.6 × 10 ⁶ জুল বৈদ্যুতিক সরঞ্জামগুলি আধান থরচ করে ফেলে না আমরা থরচ হওয়া শক্তির জন্য অর্থ প্রদান করি, আধান-এর জন্য নয়	শক্তি ও আধান -এর মধ্যে বিভ্রান্তি	

অতিরিক্ত সম্পদসমূহ

• Information on practical activities in physics for 11–19-year-olds: http://www.nuffieldfoundation.org/practical-physics (accessed 19 May 2014)

তথ্যসূত্ৰ/গ্ৰন্থতালিকা

Boohan, R. (2002) 'Learning from models, learning about models', in Amos, S. and Boohan, R. (eds) *Aspects of Teaching Secondary Science*. London, UK: RoutledgeFalmer.

Driver, R., Squires, A., Rushworth, P. and Wood-Robinson, V. (1994) *Making Sense of Secondary Science*. London, UK: Routledge.

National Strategies (2008) *Science Teaching Unit: Explaining How Electric Circuits Work.* London, UK: Department for Children, Schools and Families. Available from: http://webarchive.nationalarchives.gov.uk/20110202093118/http://nationalstrategies.standards.dcsf.gov.uk/node/286751 (accessed 21 May 2014).

Strawson, R. (2011) 'Electricity and magnetism' in Sang, D. (ed.) *Teaching Secondary Physics*. London, UK: John Murray.

কৃতজ্ঞতাশ্বীকার

এই বিষয়বস্তু ক্রিয়েটিভ কমন্স অ্যাট্রিবিউশন – শেয়ারঅ্যালাইক লাইসেন্স এর অধীনে উপলব্ধ (http://creativecommons.org/licenses/by-sa/3.0/), যদি না অন্যভাবে চিহ্নিভ হয়। লাইসেন্সটি টিইএসএস (TESS)-ইন্ডিয়ার, OU এবং UKAID লোগোগুলির ব্যবহার বহির্ভূত করে, যা শুধুমাত্র টিইএসএস(TESS)-ইন্ডিয়ার প্রকল্পের ক্ষেত্রেই অপরিবর্তিভভাবে ব্যবহার করা যেতে পারে।

কপিরাইট স্বত্বাধিকারীদের সঙ্গে যোগাযোগ করার উদ্দেশ্যে সর্বতভাবে প্রচেষ্টা করা হয়েছে। যদি কোনোটি অনিচ্ছাকৃতভাবে নজর এডিয়ে গিয়ে থাকে, তাহলে প্রকাশকরা প্রথম সুযোগেই সানন্দে প্রয়োজনীয় বন্দোবস্তু করবেন।

ভিডিও (ভিডিও স্টিল সহ): ভারত ব্যাপী শিক্ষকদের শিক্ষাদানকারী, প্রধান শিক্ষক, শিক্ষক ও ছাত্রছাত্রীদের ধন্যবাদ জানানো হচ্ছে, যারা প্রস্তুতির সময়ে ওপেন ইউনিভার্সিটির সঙ্গে কাজ করেছিলেন।