Intuitive understanding of geometry develops from experiences in real life, and often involves dynamic images. The shapes we use and play with are not static: they change, they move and they can be transformed into other shapes. For example, when sharing a square piece of cake with a friend (equally of course!), the square can be transformed into two triangles, two rectangles, etc. When making rangoli patterns (see Figure 3), shapes within shapes are played with, changed and explored.
Similar playfulness with shapes can be found in architecture. In contrast, geometry in school mathematics is often perceived as something static: facts that are not possible to play with and change. In recent years that perception is slowly being addressed by the development of dynamic geometry software such as Cabri or the free shareware package GeoGebra.
So in addition to exploring ways to overcome the barrier of the language used in school geometry, you are now going to think about developing geometric intuition. Fujita et al. (2004) describe geometric intuition as involving:
the skills to create and manipulate geometrical figures in the mind, to see geometrical properties, to relate images to concepts and theorems in geometry, and decide where and how to start when solving problems in geometry.
Like Part 2 of Activity 1, this will focus on variance and invariance; that is, on what stays the same and what can change. The next activity gives an example of how students could work more intuitively on geometrical statements and develop dynamic geometrical images in the mind at the same time. They will do this by thinking about the statement: ‘Equal chords of a circle subtend equal angles at the centre.’
For this activity, students need three straight long sticks such as bamboo poles, which are not the same length. Ask them to use these sticks to create a triangular frame so that two of the sides of the frame are equal – in other words, to create an isosceles triangle (see Figure 4). This activity is best done outside, if possible, where the students can trace their movements in some soil or sand.
Ask the students first to discuss in threes and be ready to share their thinking about these three questions with the rest of the class:
While still outside, give the students the statement ‘Equal chords of a circle subtend equal angles at the centre’ in some written format, because it is very difficult to remember.
You can read more in Resource 2, ‘Using local resources’.
For this activity we went out in the field. First we did Part 1 together as a whole class. Because I had enough bamboo sticks for five groups, I divided the students into five groups and gave them three pieces of bamboo, two of which were of the same length, and one that was different for each group. They were then told to do Part 1 of the activity within their groups and mark out the path it made. I also asked them to make notes of their observations.
The third stick of each group was then exchanged several times (they were all of different lengths) and they did the same activity again. I decided to do this before asking the questions from Part 2 of the activity, because I thought this might lead them to actually come up with similar questions. Then by the time I asked them the questions of Part 2, they would feel good, as it would be questions they had thought of already – which indeed was the case to some extent.
For Part 2 I asked them to work in groups of three at first because I thought working in smaller groups would help the mathematical discussion. They found making mathematical statements hard, but they had a go at it. It provided good preparation for Part 3 of the activity. To make sense of the vocabulary of the statement ‘Equal chords of a circle subtend equal angles at the centre’, it was really helpful to do that part of the activity in the same physical setting because it allowed the students to really point to what they had done earlier, try out some ideas and relate their vocabulary to that of the given statement.
There was a lot of running around and movement. After they had all noted down what they observed and had some whole-group discussions, we went back to the classroom. Once there, they sat down to have a further discussion of what had happened and what it meant. Although some part of that discussion repeated what was said earlier, I thought it important to make the link explicit between what happened outside the classroom and what they had to do sitting in their desks, surrounded by textbooks and exercise books. As part of their home activity I asked them to think of some activity for the other properties they had already discussed in Activity 1.
![]() Pause for thought
|
OpenLearn - Enacting vocabulary and asking questions: exploring the circle Except for third party materials and otherwise, this content is made available under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Licence, full copyright detail can be found in the acknowledgements section. Please see full copyright statement for details.