गणितीय रूप से लचीला बनने के लिए विद्यार्थियों द्वारा जो उन्हें कठिन लग रहा है उस पर ध्यान देने और अपने सवाल, विचार और कल्पनाओं को अभिव्यक्त करने की आवश्यकता है। ऐसा करने में सक्षम होने के लिए, विद्यार्थियों को गणितीय शब्दावली पढ़ने, उसकी व्याख्या करने और उसे लागू करने के अवसर की आवश्यकता है। किसी भी भाषा को सीखने के समान ही, इसमें शब्दों और अभिव्यक्तियों को पहचानना, उन्हें अलग–अलग संदर्भों और वाक्यांशों में उपयोग करना, और शब्द तथा अभिव्यक्तियों को अर्थ देना शामिल है। प्रभावी रूप से किसी भाषा को सीखने के लिए आपको नियमित रूप से उसे सुनने, देखने, पढ़ने, लिखने और बोलने का अभ्यास करने की आवश्यकता है।
गतिविधि 1 अन्वेषण करता है कि गणितीय शब्दावली के साथ किस प्रकार व्यवहार करें। इसमें विद्यार्थियों को स्वयं अपने गणितीय शब्दकोश पर चिंतन करने, ऐसे गणितीय शब्दों और कथनों को पहचानने की ज़रूरत है जिनके लिए स्पष्टीकरण की आवश्यकता हो, स्वयं अपने स्पष्टीकरण लिखने और किसी अन्य विद्यार्थी के साथ इन पर बात करने की आवश्यकता है। ऐसा करने में वे स्वयं सीखते हैं कि गणित की भाषा का कैसे अर्थ लगाया जा सकता है, जो उन्हें गणित सीखते समय ’मुक्त’ होने में मदद कर सकता है।
इस इकाई में सभी गतिविधियों का गणितीय संदर्भ त्रिकोण हैं, और विशेष रूप से, त्रिकोणों में समानता और सर्वांगसमता। लेकिन, गतिविधियों में अपनाया गया दृष्टिकोण विद्यार्थी अध्ययन के सभी प्रकरणों पर लागू किया जा सकता है।
गतिविधि 1 के भाग 3 में, विद्यार्थियों को भाग 1 और 2 में उनके अधिगम पर भी विचार करने के लिए कहा गया है। यह इस इकाई की अधिकांश गतिविधियों में दोहराया गया है। इस का उद्देश्य विद्यार्थियों को सीखते समय इस बात के बारे में अधिक जागरूक रहना है कि उनके लिए क्या कारगर होता है, और इसके परिणामस्वरूप अपने शिक्षण में अधिक सक्रिय बनना है।
इस यूनिट में अपने विद्यार्थियों के साथ गतिविधियों के उपयोग का प्रयास करने के पहले अच्छा होगा कि आप सभी गतिविधियों को पूरी तरह (या आंशिक रूप से) स्वयं करके देखें। यह और भी बेहतर होगा यदि आप इसका प्रयास अपने किसी सहयोगी के साथ करें, क्योंकि जब आप अनुभव पर विचार करेंगे तो आपको मदद मिलेगी। स्वयं प्रयास करने से आपको शिक्षार्थी के अनुभवों के भीतर झांकने का मौका मिलेगा, जो परोक्ष रूप से आपके शिक्षण और एक शिक्षक के रूप में आपके अनुभवों को प्रभावित करेगा। जब आप तैयार हों, तो अपने विद्यार्थियों के साथ गतिविधियों का उपयोग करें। पाठ के बाद, सोचें कि गतिविधि किस तरह हुई और उससे क्या सीख मिली। इससे आपको अधिक विद्यार्थी–केन्द्रित शैक्षिक वातावरण विकसित करने में मदद मिलेगी।
इस गतिविधि में विद्यार्थियों को अन्य विद्यार्थियों के साथ अपने विचारों का आदान–प्रदान करने की आवश्यकता है – वे और अधिक विचारों और प्रतिक्रियाओं को प्रेरित करने के लिए जोड़े या छोटे समूहों में काम कर सकते हैं। गतिविधि के लिए समय पर विचार करें, ताकि वह समाप्त न हो जाए और सभी भागों पर ध्यान दिया जाए; उदाहरण के लिए, मान लें ’मैं चाहती हूँ कि अगले दस मिनट में आप ज़्यादा से ज्यादा... ढूँढ़ें’
आपको विद्यार्थी के शब्दकोश में कुछ प्रविष्टियों के उदाहरण मिल सकते हैं। संसाधन 2.
अपने विद्यार्थियों को निम्न बताएँ:
त्रिकोण के बारे में अपनी पाठ्यपुस्तक में अध्यायों को देखें।
अपने विद्यार्थियों को निम्न बताएँ:
फिर, समूहों या जोड़ों में, त्रिकोणों के बारे में अपनी पाठ्यपुस्तक के अध्यायों को देखें।
कोई ऐसे गणितीय कथनों को लिख लें जिनसे आपका सामना हो, जिन्हें समझने में विद्यार्थियों को परेशानी हो सकती है। उदाहरण के लिएः ‘दो त्रिकोण सर्वांगसम हैं यदि उसकी दो भुजाएँ और एक त्रिकोण का सम्मिलित कोण दो भुजाओं और दूसरे त्रिकोण के सम्मिलित कोण के बराबर है (SAS सर्वांगसम नियम)’।
कथन के संदर्भ में आपको समझ में न आने वाले शब्दों को पहचानें। उपर्युक्त उदाहरण में, यह के लिए ‘सम्मिलित’ शब्द हो सकता है, जिसे आप दैनिक भाषा में समझ गए होंगे, लेकिन जिसे गणितीय कथन में समझाना मुश्किल लग सकता है।
गतिविधि के इस भाग के लिए विद्यार्थियों को ढूँढ़ने के लिए कहने के बजाय कुछ उदाहरण तैयार रखना उपयोगी हो सकता है। आप उस पाठ से उन्हें निकाल सकते हैं, जिसे वे पढ़ रहे हैं। इससे समय की बचत होगी, क्योंकि उन्हें उदाहरण खोजने की ज़रूरत नहीं होगी।
अपने विद्यार्थियों को निम्न बताएँ:
गतिविधि का यह भाग चाहता है कि आप अपने शिक्षण के बारे में सोचे, ताकि आप गणित सीखने में बेहतर बन सकें और अधिक सहज महसूस कर सकें।
आप मुख्य संसाधन ‘स्थानीय संसाधनों का उपयोग’ और ‘सामूहिक कार्य का उपयोग’ भी देख सकते हैं।
यह एक अध्यापक की कहानी है , जिसने अपने माध्यमिक कक्षा के विद्यार्थियों के साथ गतिविधि 1 का प्रयास किया। वे एक अंग्रेज़ी माध्यम के स्कूल में पढ़ाते हैं।
विद्यार्थी इस गतिविधि को शुरू करते हुए बेहद ख़ुश थे; उन्होंने अपनी पुस्तकें खोलीं और उन्होंने ऐसे शब्दों को ढूँढ़ना शुरू किया, जो उन्हें लगा कि उनके लिए नए हैं या ज्यामिति के लिए विशिष्ट हैं।
जब मैं कक्षा में चारों ओर चहलक़दमी कर रहा था, तो मैंने नोटिस किया कि उन्होंने कुछ शब्दों के अर्थ एक दूसरे से पूछ कर या पाठ्यपुस्तक में व्याख्या पढ़ कर जान लिया, और उनके आगे ख़ाली जगह छोड़ दी, जिन्हें वे नहीं जानते थे। शब्दों के अर्थ एक दूसरे से पूछते समय दरअसल विद्यार्थी बहुत शोर मचा रहे थे। शायद अगली बार मैं कहूँगा कि उन्हें केवल अपने बग़ल में बैठे विद्यार्थी से पूछने की अनुमति है, आगे या पीछे वालों से नहीं। दूसरी बात यह कि शोर गणितीय चर्चा थी और अधिक लोगों से पूछने पर वे अधिक जानकारी पाने में सक्षम हुए।
थोड़ी देर के बाद, मैंने उन्हें याद दिलाया कि उन्हें गतिविधि के अन्य प्रश्नों को भी हल करना है, जो कि उन्हें अपने शब्दों में लिखने का प्रयास करना, चित्र बनाना और फिर यह सोचना और लिखना था कि क्या उन्होंने उस शब्द को गणित के अलावा किसी और संदर्भ में देखा था, और उस संदर्भ में उसका क्या मतलब होगा। विद्यार्थियों को अर्थ के बारे में अंतिम प्रश्न कठिन लगाः उनके द्वारा अंग्रेज़ी भाषा का प्रयोग व्यापक नहीं है और मैंने शब्दकोश में अर्थ ढूँढ़ने के लिए उन्हें प्रोत्साहित किया, ताकि वे देख सकें कि दैनिक शब्द, गणितीय शब्द के कितने निकट का संबध रखते हैं, या नहीं रखते हैं। कुछ विद्यार्थियों के लिए मुझे शब्दों का हिन्दी में अनुवाद करना पड़ा।
यह विद्यार्थियों और मेरे लिए अत्यंत उत्पादक अभ्यास थाः विद्यार्थियों को लिखने, पढ़ने और अभिव्यक्त करने से संबंधित गणित के भाषा पहलू पर वास्तव में काम करने का मौका़ मिला। मुझे, उसने एहसास कराया कि गणित में प्रयुक्त भाषा किस हद तक विद्यार्थियों के लिए अपरिचित है और गणितीय अवधारणाओं को सीखने में उनके लिए बाधक है। मैं वाक़ई भविष्य में गणित की भाषा सीखने पर अधिक समय और ध्यान खर्च करना चाहता हूँ – यदि शब्दों का उनके लिए कोई अर्थ नहीं है, तो वे उनके बारे में कैसे सीख सकते हैं? उदाहरण के लिए, मैंने एक गणितीय अंग्रेज़ी–हिन्दी शब्दकोश संकलित करना शुरू कर दिया है, जो हमें कक्षा में उपलब्ध रहेगा।
जब आप अपनी कक्षा के साथ ऐसी कोई गतिविधि करें, तो बाद में सोचे कि क्या ठीक रहा और कहाँ गड़बड़ हुई। ऐसे प्रश्नों की ओर ध्यान दें जिनमें विद्यार्थियों ने दिलचस्पी दिखाई और जिन्हें वे समझने में समर्थ थे, और जिनके लिए आपको स्पष्टीकरण देने की आवश्यकता हुई। ऐसी बातें ऐसी ’स्क्रिप्ट’ पता करने में सहायक होती हैं, जिससे आप विद्यार्थियों में गणित के प्रति रुचि जगा सकें और उसे मनोरंजक बना सकें। यदि वे कुछ भी समझ नहीं पाते हैं तथा कुछ भी नहीं कर पाते हैं, तो वे शामिल होने में कम रुचि लेंगे। जब भी आप गतिविधियां करें, इस चिंतनीय अभ्यास का उपयोग करें, इस बात पर ध्यान देते हुए, जैसे श्री अग्रवाल ने किया था, कि कुछ छोटी–छोटी चीज़ों से काफी फर्क पड़ा ।
![]() विचार के लिए रुकें ऐसे चिंतन को गति देने वाले अच्छे सवाल हैं:
|
OpenLearn - गणितीय लचीलेपन का निर्माण :त्रिभुजों में समरुपता और सर्वांगसमता Except for third party materials and otherwise, this content is made available under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Licence, full copyright detail can be found in the acknowledgements section. Please see full copyright statement for details.