References

Baym, M., Lieberman, T., Kelsic, E., Chait, R., Gross, R., Yelin, I. and Kishony, R. (2016) ‘Spatiotemporal microbial evolution on antibiotic landscapes’, Science, 3539(6304), pp. 1147–51 [online]. Available at https://science.sciencemag.org/ content/ 353/ 6304/ 1147 [Tip: hold Ctrl and click a link to open it in a new tab. (Hide tip)] (accessed 4 June 2020).
Bonnet, R. (2004) ‘Growing group of extended-spectrum β-lactamases: the CTX-M enzymes’, Antimicrobial Agents and Chemotherapy, 48(1), pp. 1–14 [online]. Available at https://www.ncbi.nlm.nih.gov/ pmc/ articles/ PMC310187/ (accessed 4 June 2020).
British Society for Antimicrobial Chemotherapy (BSAC UK) (2014) Resistance Surveillance Project [online]. Available at http://www.bsacsurv.org/ reports/ bacteraemia#results (accessed 4 June 2020).
Cantón, R. and Coque, T. M. (2006) ‘The CTX-M β-lactamase pandemic’, Current Opinion in Microbiology, 9(5), pp. 466–75 [online]. Available at https://www.sciencedirect.com/ science/ article/ abs/ pii/ S1369527406001342 (accessed 4 June 2020).
Carattoli, A. (2013) ‘Plasmids and the spread of resistance’, International Journal of Medical Microbiology, 303(6–7), pp. 298–304 [online]. Available at https://www.sciencedirect.com/ science/ article/ abs/ pii/ S1438422113000167 (accessed 4 June 2020).
Cartelle, M., del Mar Tomas, M., Molina, F., Moure, R., Villanueva, R. and Bou, G. (2004) ‘High-level resistance to ceftazidime conferred by a novel enzyme, CTX-M-32, derived from CTX-M-1 through a single Asp240-Gly substitution’, Antimicrobial Agents and Chemotherapy, 48(6), pp. 2308–13 [online]. Available at https://www.ncbi.nlm.nih.gov/ pmc/ articles/ PMC415568/ pdf/ 0618-03.pdf (accessed 4 June 2020).
Center for Disease Control (CDC) (2017) ‘About antibiotic resistance’ [online]. Available at https://www.cdc.gov/ drugresistance/ about.html (accessed 4 June 2020).
Chen, Y., Delmas, J., Sirot, J., Shoichet, B. and Bonnet, R. (2005) ‘Atomic resolution structures of CTX-M β-lactamases: extended spectrum activities from increased mobility and decreased stability’, Journal of Molecular Biology, 348(2), pp. 349–62 [online]. Available at https://www.sciencedirect.com/ science/ article/ abs/ pii/ S0022283605001634 (accessed 4 June 2020).
Cohut, M. (2019). ‘Antibiotic resistance in farm animals is rising fast’, Medical News Today [online]. Available at https://www.medicalnewstoday.com/ articles/ 326436 (accessed 4 June 2020).
The Comprehensive Antibiotic Resistance Database, https://card.mcmaster.ca/ home [online] (accessed 4 June 2020).
Cox, G. and Wright, G. (2013) ‘Intrinsic antibiotic resistance: mechanisms, origins, challenges and solutions’, International Journal of Medical Microbiology, 303(6–7), pp. 287–92 [online]. Available at https://www.sciencedirect.com/ science/ article/ abs/ pii/ S1438422113000246 (accessed 4 June 2020).
Duplessis, C. and Crum-Cianflone, N. F. (2011) ‘Ceftaroline: a new cephalosporin with activity against methicillin-resistant Staphylococcus aureus (MRSA)’, Clinical Medicine Reviews in Therapeutics, 3, pp. 24–66 [online]. Available at https://www.ncbi.nlm.nih.gov/ pmc/ articles/ PMC3140339/ (accessed 4 June 2020).
Falgenhauer, M., Yao, Y., Fritzenwanker, M., Schmiedel, J., Imirzalioglu, C., Chakraborty, T. (2014) ‘Complete genome sequence of phage-like plasmid pECOH89, encoding CTX-M-15’, Genome Announcements, 2(2), pp. e00356–14 [online]. Available at https://mra.asm.org/ content/ 2/ 2/ e00356-14.short (accessed 4 June 2020).
Gallagher, J. (2017) ‘Bug resistant to all antibiotics kills woman’, BBC News, 13 January [online]. Available at https://www.bbc.co.uk/ news/ health-38609553 (accessed 5 June 2020).
Hernández-Allés, S., Conejo, M., Pascual, A., Tomás, J., Benedí, V. and Martínez-Martínez, L. (2000) ‘Relationship between outer membrane alterations and susceptibility to antimicrobial agents in isogenic strains of Klebsiella pneumoniae’, Journal of Antimicrobial Chemotherapy, 46(2), pp. 273–7 [online]. Available at https://academic.oup.com/ jac/ article/ 46/ 2/ 273/ 881421 (accessed 4 June 2020).
Humeniuk, C., Arlet, G., Gautier, V., Grimont, P., Labia, R. and Philippon, A. (2002) ‘β-Lactamases of Kluyvera ascorbata: probable progenitors of some plasmid-encoded CTX-M types’, Antimicrobial Agents and Chemotherapy, 46(9), pp. 3045–9 [online]. Available at https://www.ncbi.nlm.nih.gov/ pmc/ articles/ PMC127423/ (accessed 4 June 2020).
Kisgen, J and Whitney, D. (2008) ‘Ceftobiprole, a broad-spectrum cephalosporin with activity against methicillin-resistant Staphylococcus aureus (MRSA)’, Pharmacy and Therapeutics, 33(11), pp. 631–41 [online]. Available at https://www.ncbi.nlm.nih.gov/ pmc/ articles/ PMC2730812/ (accessed 4 June 2020).
Kosmidis, C. Schindler, B., Jacinto, P., Patel, D., Bains, K., Seo, S. and Kaatz, G. (2012) ‘Expression of multidrug resistance efflux pump genes in clinical and environmental isolates of Staphylococcus aureus’, International Journal of Antimicrobial Agents, 40(3), pp. 204–9 [online]. Available at https://www.sciencedirect.com/ journal/ international-journal-of-antimicrobial-agents (accessed 27 November 2020).
Lim, D. and Strynadka, N. C. J. (2002) ‘Structural basis for the beta lactam resistance of PBP2a from methicillin-resistant Staphylococcus aureus’, Nature Structural Biology, 9(11), pp. 870–6 [online]. Available at https://www.nature.com/ articles/ nsb858 (accessed 4 June 2020).
Long, K. S., Poehlsgaard, J., Kehrenberg, C., Schwarz, S. and Vester, B. (2006) ‘The Cfr rRNA methyltransferase confers resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins, and streptogramin A antibiotics’, Antimicrobial Agents and Chemotherapy, 50(7), pp. 2500–5 [online]. Available at https://www.ncbi.nlm.nih.gov/ pmc/ articles/ PMC1489768/ (accessed 4 June 2020).
NICE (2017) ‘Ceftraroline fosamil’ [online]. Available at https://bnf.nice.org.uk/ drug/ ceftaroline-fosamil.html (accessed 4 June 2020).
OpenStax College Microbiology (n.d.) ‘Mechanisms of antibacterial drugs’, Microbiology [online], OpenStax-CNX. Available at https://cnx.org/ contents/ 5CvTdmJL@4.2:pFqSkA-N@4/ Mechanisms-of-Antibacterial-Dr (accessed 4 June 2020).
Pfizer (2017) Antimicrobial Testing Leadership and Surveillance (ATLAS) [online]. Available at https://atlas-surveillance.com/ (accessed 4 June 2020).
Potron, A., Nordmann, P., Rondinaud, E., Jaureguy, F. and Poirel, L. (2013) ‘A mosaic transposon encoding OXA-48 and CTX-M-15: towards pan-resistance’, Journal of Antimicrobial Chemotherapy, 68(2), pp. 476–7 [online]. Available at https://academic.oup.com/ jac/ article/ 68/ 2/ 476/ 674526 (accessed 4 June 2020).
Public Health England (PHE) (2017) ‘Antimicrobial resistance (AMR)’ [online]. Available at https://www.gov.uk/ government/ collections/ antimicrobial-resistance-amr-information-and-resources (accessed 4 June 2020).
Smet, A., Van Nieuwerburgh, F., Vandekerckhove, T. T. M., Martel, A., Deforce, D., Butaye, P. and Haesebrouck, F. (2010) ‘Complete nucleotide sequence of CTX-M-15-plasmids from clinical Escherichia coli isolates: insertional events of transposons and insertion sequences’, PLoS ONE, 5(6), p. e11202 [online]. Available at https://journals.plos.org/ plosone/ article?id=10.1371/ journal.pone.0011202 (accessed 4 June 2020).
Valent, P., Groner, B., Schumacher, U., Superti-Furga, G., Busslinger, M., Kralovics, R., Zielinski, C., Penninger, J. M., Kerjaschki, D., Stingl, G., Smolen, J. S., Valenta, R., Lassmann, H., Kovar, H., Jäger, U., Kornek, G., Müller, M. and Sörgel, F. (2016) ‘Paul Ehrlich (1854–1915) and his contributions to the foundation and birth of translational medicine’, Journal of Innate Immunity, 8, pp. 111–20 [online]. Available at https://www.karger.com/ Article/ Fulltext/ 443526 (accessed 4 June 2020).
Woodford, N. and Ellington, M. J. (2007) ‘The emergence of antibiotic resistance by mutation’, Clinical Microbiology and Infection, 13, pp. 5–18 [online]. Available at https://onlinelibrary.wiley.com/ doi/ full/ 10.1111/ j.1469-0691.2006.01492.x (accessed 4 June 2020).

6 Your experience of this module

Acknowledgements