References
Baym, M., Lieberman, T., Kelsic, E., Chait, R., Gross, R., Yelin, I. and Kishony, R. (2016) ‘Spatiotemporal microbial evolution on antibiotic landscapes’, Science, vol. 353, no. 6304, pp. 1147–51 [Online]. Available at http://science.sciencemag.org/ content/ 353/ 6304/ 1147 [Tip: hold Ctrl and click a link to open it in a new tab. (Hide tip)] (Accessed 30 October 2017).
Bonnet, R. (2004) ‘Growing group of extended-spectrum β-lactamases: the CTX-M enzymes’, Antimicrobial Agents and Chemotherapy, vol. 48, no. 1, pp. 1–14 [Online]. Available at www.ncbi.nlm.nih.gov/ pmc/ articles/ PMC310187/ (Accessed 17 November 2017).
Cantón, R. and Coque, T. M. (2006) ‘The CTX-M β-lactamase pandemic’, Current Opinion in Microbiology, vol. 9, no. 5, pp. 466–75 [Online]. Available at www.sciencedirect.com/ science/ article/ pii/ S1369527406001342 (Accessed 15 November 2017).
Carattoli, A. (2013) ‘Plasmids and the spread of resistance’, International Journal of Medical Microbiology, vol. 303, no. 6–7, pp. 298–304 [Online]. Available at www.sciencedirect.com/ science/ article/ pii/ S1438422113000167 (Accessed 15 November 2017).
Cartelle, M., del Mar Tomas, M., Molina, F., Moure, R., Villanueva, R. and Bou, G. (2004) ‘High-level resistance to ceftazidime conferred by a novel enzyme, CTX-M-32, derived from CTX-M-1 through a single Asp240-Gly substitution’, Antimicrobial Agents and Chemotherapy, vol. 48, no. 6, pp. 2308–13 [Online]. Available at www.ncbi.nlm.nih.gov/ pmc/ articles/ PMC415568/ pdf/ 0618-03.pdf (Accessed 17 November 2017).
Chen, Y., Delmas, J., Sirot, J., Shoichet, B. and Bonnet, R. (2005) ‘Atomic resolution structures of CTX-M β-lactamases: extended spectrum activities from increased mobility and decreased stability’, Journal of Molecular Biology, vol. 348, no. 2, pp. 349–62 [Online]. Available at www.sciencedirect.com/ science/ article/ pii/ S0022283605001634 (Accessed 17 November 2017).
Falgenhauer, M., Yao, Y., Fritzenwanker, M., Schmiedel, J., Imirzalioglu, C., Chakraborty, T. (2014) ‘Complete Genome Sequence of Phage-Like Plasmid pECOH89, Encoding CTX-M-15’, Genome Announc. vol. 2, no. 2, pp. e00356-14 [Online] Available at https://mra.asm.org/ content/ 2/ 2/ e00356-14.short (Accessed 9th October 2018)
Humeniuk, C., Arlet, G., Gautier, V., Grimont, P., Labia, R. and Philippon, A. (2002) ‘β-Lactamases of Kluyvera ascorbata, Probable progenitors of some plasmid-encoded CTX-M types’, Antimicrobial Agents and Chemotherapy, vol. 46, no. 9, pp. 3045–9 [Online]. Available at www.ncbi.nlm.nih.gov/ pmc/ articles/ PMC127423/ (Accessed 14 November 2017).
Potron, A., Nordmann, P., Rondinaud, E., Jaureguy, F. and Poirel, L. (2013) ‘A mosaic transposon encoding OXA-48 and CTX-M-15: towards pan-resistance’, Journal of Antimicrobial Chemotherapy, vol. 68, no. 2, pp. 476–7 [Online]. Available at https://academic.oup.com/ jac/ article/ 68/ 2/ 476/ 674526 (Accessed 15 November 2017).
Smet, A., Van Nieuwerburgh, F., Vandekerckhove, T. T. M., Martel, A., Deforce, D., Butaye, P. and Haesebrouck, F. (2010) ‘Complete nucleotide sequence of CTX-M-15-plasmids from clinical Escherichia coli isolates: insertional events of transposons and insertion sequences’, PLoS ONE, vol. 5, no. 6, p. e11202 [Online]. Available at http://journals.plos.org/ plosone/ article?id=10.1371/ journal.pone.0011202 (Accessed 15 November 2017).