Skip to main content

About this free course

Download this course

Share this free course

Understanding antibiotic resistance
Understanding antibiotic resistance

Start this free course now. Just create an account and sign in. Enrol and complete the course for a free statement of participation or digital badge if available.

References

Week 1
Barber, M. (1960) ‘Drug-resistant staphylococcal infection’ in ‘The use and abuse of antibiotics’, Journal of Obstetrics and Gynaecology, vol. 67, pp. 727–32.
Center for Disease Dynamics, Economics & Policy (CDDEP) (2015) State of the World’s Antibiotics, 2015 [Online], CDDEP, Washington, DC. Available at https://cddep.org/ publications/ state_worlds_antibiotics_2015/ [Tip: hold Ctrl and click a link to open it in a new tab. (Hide tip)] (Accessed 10 January 2018).
Center for Disease Dynamics, Economics & Policy (CDDEP) (2017) Resistance map data visualization tools [Online]. Available at https://resistancemap.cddep.org/ (Accessed 10 January 2018).
OpenStax College Microbiology (n.d.) ‘Mechanisms of antibacterial drugs’, Microbiology [Online], OpenStax-CNX. Available at https://cnx.org/contents/5CvTdmJL@4.2:pFqSkA-N@4/Mechanisms-of-Antibacterial-Dr (Accessed 10 January 2018).
Organisation for Economic Cooperation and Development (OECD) (2016) Antimicrobial resistance: Policy insights [Online], Paris, OECD. Available at www.oecd.org/ health/ health-systems/ AMR-Policy-Insights-November2016.pdf (Accessed 10 January 2018).
World Health Organization (WHO) (2017) WHO publishes list of bacteria for which new antibiotics are urgently needed [Online], Geneva, World Health Organization. Available at www.who.int/ mediacentre/ news/ releases/ 2017/ bacteria-antibiotics-needed/ en/ (Accessed 10 January 2018).
Week 2
OpenStax College Microbiology (n.d.) ‘Mechanisms of antibacterial drugs’, Microbiology [Online], OpenStax-CNX. Available at https://cnx.org/contents/5CvTdmJL@4.2:pFqSkA-N@4/Mechanisms-of-Antibacterial-Dr (Accessed 10 January 2018).
Valent, P., Groner, B., Schumacher, U., Superti-Furga, G., Busslinger, M., Kralovics, R., Zielinski, C., Penninger, J. M., Kerjaschki, D., Stingl, G., Smolen, J. S., Valenta, R., Lassmann, H., Kovar, H., Jäger, U., Kornek, G., Müller, M. and Sörgel, F. (2016) ‘Paul Ehrlich (1854–1915) and his contributions to the foundation and birth of translational medicine’, Journal of Innate Immunity, vol. 8, pp. 111–20 [Online]. Available at www.karger.com/Article/Fulltext/443526 (Accessed 11 January 2018).
Week 3
British Society for Antimicrobial Chemotherapy (BSAC UK) (2014) Resistance Surveillance Project [Online]. Available at www.bsacsurv.org/reports/bacteraemia#results (Accessed 29 November 2017).
Center for Disease Control (CDC) (2017) About Antimicrobial Resistance [Online]. Available at www.cdc.gov/ drugresistance/ about.html (Accessed 20 November 2017).
Cox, G. and Wright, G. (2013) ‘Intrinsic antibiotic resistance: mechanisms, origins, challenges and solutions’, International Journal of Medical Microbiology, vol. 303, no. 6–7, pp. 287–92 [Online]. Available at www.sciencedirect.com/ science/ article/ pii/ S1438422113000246 (Accessed 27 November 2017).
Duplessis, C. and Crum-Cianflone, N. F. (2011) ‘Ceftaroline: a new cephalosporin with activity against methicillin-resistant Staphylococcus aureus (MRSA)’, Clinical Medicine Reviews in Therapeutics, vol. 3, pp. 24–66 [Online]. Available at www.ncbi.nlm.nih.gov/ pmc/ articles/ PMC3140339/ (Accessed 27 November 2017).
Hernández-Allés, S., Conejo, M., Pascual, A., Tomás, J., Benedí, V. and Martínez-Martínez, L. (2000) ‘Relationship between outer membrane alterations and susceptibility to antimicrobial agents in isogenic strains of Klebsiella pneumoniae’, Journal of Antimicrobial Chemotherapy, vol. 46, no. 2, pp. 273–7 [Online]. Available at https://academic.oup.com/ jac/ article/ 46/ 2/ 273/ 881421 (Accessed 30 November 2017).
Kisgen, J and Whitney, D. (2008) ‘Ceftobiprole, a broad-spectrum cephalosporin with activity against methicillin-resistant Staphylococcus aureus (MRSA)’, Pharmacy and Therapeutics, vol. 33, no. 11, pp. 631–41 [Online]. Available at www.ncbi.nlm.nih.gov/ pmc/ articles/ PMC2730812/ (Accessed 27 November 2017).
Kosmidis, C. Schindler, B., Jacinto, P., Patel, D., Bains, K., Seo, S. and Kaatz, G. (2012) ‘Expression of multidrug resistance efflux pump genes in clinical and environmental isolates of Staphylococcus aureus’, International Journal of Antimicrobial Agents, vol. 40, no. 3, pp. 204–9 [Online]. Available at www.ijaaonline.com/ article/ S0924-8579(12)00184-7/ fulltext (Accessed 24 November 2017).
Lim, D. and Strynadka, N. C. J. (2002) ‘Structural basis for the beta lactam resistance of PBP2a from methicillin-resistant Staphylococcus aureus’, Nature Structural Biology, vol. 9, no. 11, pp. 870–6 [Online]. Available at www.nature.com/ articles/ nsb858 (Accessed 27 November 2017).
Long, K. S., Poehlsgaard, J., Kehrenberg, C., Schwarz, S. and Vester, B. (2006) ‘The Cfr rRNA methyltransferase confers resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins, and streptogramin A antibiotics’, Antimicrobial Agents and Chemotherapy, vol. 50, no. 7, pp. 2500–5 [Online]. Available at www.ncbi.nlm.nih.gov/ pmc/ articles/ PMC1489768/ (Accessed 23 November 2017).
NICE (2017) ‘Ceftraroline fosamil’ [Online[. Available at https://bnf.nice.org.uk/ drug/ ceftaroline-fosamil.html (Accessed 27 November 2017).
Pfizer (2017) Antimicrobial Testing Leadership and Surveillance (ATLAS) [Online]. Available at https://atlas-surveillance.com/ (Accessed 28 November 2017).
Public Health England (PHE) (2017) Antimicrobial Resistance (AMR) [Online]. Available at www.gov.uk/ government/ collections/ antimicrobial-resistance-amr-information-and-resources (Accessed 20 November 2017).
Woodford, N. and Ellington, M. J. (2007) ‘The emergence of antibiotic resistance by mutation’, Clinical Microbiology and Infection, vol. 13, pp. 5–18 [Online]. Available at http://onlinelibrary.wiley.com/ doi/ 10.1111/ j.1469-0691.2006.01492.x/ full (Accessed 20 November 2017).
Week 4
Baym, M., Lieberman, T., Kelsic, E., Chait, R., Gross, R., Yelin, I. and Kishony, R. (2016) ‘Spatiotemporal microbial evolution on antibiotic landscapes’, Science, vol. 353, no. 6304, pp. 1147–51 [Online]. Available at http://science.sciencemag.org/ content/ 353/ 6304/ 1147 (Accessed 30 October 2017).
Bonnet, R. (2004) ‘Growing group of extended-spectrum β-lactamases: the CTX-M enzymes’, Antimicrobial Agents and Chemotherapy, vol. 48, no. 1, pp. 1–14 [Online]. Available at www.ncbi.nlm.nih.gov/ pmc/ articles/ PMC310187/ (Accessed 17 November 2017).
Cantón, R. and Coque, T. M. (2006) ‘The CTX-M β-lactamase pandemic’, Current Opinion in Microbiology, vol. 9, no. 5, pp. 466–75 [Online]. Available at www.sciencedirect.com/ science/ article/ pii/ S1369527406001342 (Accessed 15 November 2017).
Carattoli, A. (2013) ‘Plasmids and the spread of resistance’, International Journal of Medical Microbiology, vol. 303, no. 6–7, pp. 298–304 [Online]. Available at www.sciencedirect.com/ science/ article/ pii/ S1438422113000167 (Accessed 15 November 2017).
Cartelle, M., del Mar Tomas, M., Molina, F., Moure, R., Villanueva, R. and Bou, G. (2004) ‘High-level resistance to ceftazidime conferred by a novel enzyme, CTX-M-32, derived from CTX-M-1 through a single Asp240-Gly substitution’, Antimicrobial Agents and Chemotherapy, vol. 48, no. 6, pp. 2308–13 [Online]. Available at www.ncbi.nlm.nih.gov/ pmc/ articles/ PMC415568/ pdf/ 0618-03.pdf (Accessed 17 November 2017).
Chen, Y., Delmas, J., Sirot, J., Shoichet, B. and Bonnet, R. (2005) ‘Atomic resolution structures of CTX-M β-lactamases: extended spectrum activities from increased mobility and decreased stability’, Journal of Molecular Biology, vol. 348, no. 2, pp. 349–62 [Online]. Available at www.sciencedirect.com/ science/ article/ pii/ S0022283605001634 (Accessed 17 November 2017).
Falgenhauer, M., Yao, Y., Fritzenwanker, M., Schmiedel, J., Imirzalioglu, C., Chakraborty, T. (2014) ‘Complete Genome Sequence of Phage-Like Plasmid pECOH89, Encoding CTX-M-15’, Genome Announc. vol. 2, no. 2, pp. e00356-14 [Online] Available at https://mra.asm.org/ content/ 2/ 2/ e00356-14.short (Accessed 9th October 2018)
Humeniuk, C., Arlet, G., Gautier, V., Grimont, P., Labia, R. and Philippon, A. (2002) ‘β-Lactamases of Kluyvera ascorbata, Probable progenitors of some plasmid-encoded CTX-M types’, Antimicrobial Agents and Chemotherapy, vol. 46, no. 9, pp. 3045–9 [Online]. Available at www.ncbi.nlm.nih.gov/ pmc/ articles/ PMC127423/ (Accessed 14 November 2017).
Potron, A., Nordmann, P., Rondinaud, E., Jaureguy, F. and Poirel, L. (2013) ‘A mosaic transposon encoding OXA-48 and CTX-M-15: towards pan-resistance’, Journal of Antimicrobial Chemotherapy, vol. 68, no. 2, pp. 476–7 [Online]. Available at https://academic.oup.com/ jac/ article/ 68/ 2/ 476/ 674526 (Accessed 15 November 2017).
Smet, A., Van Nieuwerburgh, F., Vandekerckhove, T. T. M., Martel, A., Deforce, D., Butaye, P. and Haesebrouck, F. (2010) ‘Complete nucleotide sequence of CTX-M-15-plasmids from clinical Escherichia coli isolates: insertional events of transposons and insertion sequences’, PLoS ONE, vol. 5, no. 6, p. e11202 [Online]. Available at http://journals.plos.org/ plosone/ article?id=10.1371/ journal.pone.0011202 (Accessed 15 November 2017).
Week 5
Center for Disease Dynamics, Economics and Policy (CDDEP) (2017) ResistanceMap [Online]. Available at https://resistancemap.cddep.org/(Accessed 28 April 2018).
GlaxoSmithKline plc (GSK) (2018) Antibiotics research [Online]. Available at www.gsk.com/ en-gb/ research/ what-we-are-working-on/ antibiotics-research/ (Accessed 28 April 2018).
Meek, R. W., Vyas, H. and Piddock, L. J. V. (2015) ‘Nonmedical uses of antibiotics: time to restrict their use?’, Public Library of Science [Online]. Available at https://doi.org/ 10.1371/ journal.pbio.1002266 (Accessed 28 April 2018).
Ocan, M., Obuku, E. A., Bwanga, F., Akena, D., Richard, S., Ogwal-Okeng, J. and Obua, C. (2015) ‘Household antimicrobial self-medication: a systematic review and meta-analysis of the burden, risk factors and outcomes in developing countries’, BMC Public Health, vol. 15, p. 742. [Online]. Available at http://doi.org/ 10.1186/ s12889-015-2109-3 (Accessed 28 April 2018).
O’Neill, J. (2015) ‘Antimicrobials in agriculture and the environment: reducing unnecessary use and waste’, The Review of Antimicrobial Resistance [Online]. Available at https://amr-review.org/ sites/ default/ files/ Antimicrobials%20in%20agriculture%20and%20the%20environment%20-%20Reducing%20unnecessary%20use%20and%20waste.pdf (Accessed 28 April 2018).
O’Neill, J. (2016) ‘Infection prevention, control and surveillance: limiting the development and spread of drug resistance’, The Review of Antimicrobial Resistance [Online]. Available at https://amr-review.org/ sites/ default/ files/ Health%20infrastructure%20and%20surveillance%20final%20version_LR_NO%20CROPS.pdf (Accessed 28 April 2018).
Public Health England (2015) Health matters: antimicrobial resistance [Online]. Available at www.gov.uk/ government/ publications/ health-matters-antimicrobial-resistance/ health-matters-antimicrobial-resistance (Accessed 28 April 2018).
Van Boeckel, T. P., Brower, C., Gilbert, M., Grenfell, B. T., Levin, S. A., Robinson, T. P., Teillant, A. and Laxminarayan, R. (2015) ‘Global trends in antimicrobial use in food animals’, Proceedings of the National Academy of Sciences, vol. 112, no. 18, pp. 5649–54 [Online]. Available at www.pnas.org/ content/ 112/ 18/ 5649 (Accessed 28 April 2018).
Ventola, C. L. (2015) ‘The antibiotic resistance crisis: part 1: causes and threats’, Pharmacy and Therapeutics, vol. 40, no. 4, pp. 277–83 [Online]. Available at www.ncbi.nlm.nih.gov/ pmc/ articles/ PMC4378521/ (Accessed 28 April 2018).
Wi, T. E., Lahra, M., Ndowa, F., Bala, M., Dillon, J.-A., Pardo, P. R., Eremin, R., Bolan, G. and Unemo, M. (2017) ‘Antimicrobial resistance in Neisseria gonorrhoeae: global surveillance and a call for international collaborative action’, Public Library of Science [Online]. Available at http://journals.plos.org/ plosmedicine/ article?id=10.1371/ journal.pmed.1002344 (Accessed 28 April 2018).
World Health Organization (WHO) (2017a) Antibacterial agents in clinical development: an analysis of the antibacterial clinical development pipeline, including tuberculosis [Online]. Available at www.who.int/ medicines/ areas/ rational_use/ antibacterial_agents_clinical_development/ en/ (Accessed 28 April 2018).
World Health Organization (WHO) (2017b) Global antimicrobial resistance surveillance system (GLASS) report [Online]. Available at http://www.who.int/ glass/ resources/ publications/ early-implementation-report/ en/ (Accessed 28 April 2018).
World Health Organization (WHO) (2017c) The world is running out of antibiotics, WHO report confirms [Online]. Available at www.who.int/ mediacentre/ news/ releases/ 2017/ running-out-antibiotics/ en/ (Accessed 28 April 2018).
Week 6
Clegg, B. (2015) ‘Cephalosporins. Chemistry World podcast’, Chemistry World [Podcast]. 15 October. Available at www.chemistryworld.com/ podcasts/ cephalosporins/ 9057.article (Accessed 29 April 2018).
Friedrich-Schiller-Universitaet Jena (2017) ‘Nanoparticles as a solution against antibiotic resistance? Scientists fight mucoviscidosis with nanoparticles’, ScienceDaily [Online]. Available at www.sciencedaily.com/ releases/ 2017/ 12/ 171215094456.htm (Accessed 29 April 2018).
Garner, C. (2016) ‘Tackling superbugs with antibiotic resistance breakers: an interview with Professor Colin Garner, Chief Executive, Antibiotic Research UK’, News-Medical.Net [Online]. Available at www.news-medical.net/ news/ 20160413/ Tackling-superbugs-with-antibiotic-resistance-breakers-an-interview-with-Professor-Colin-Garner-Chief-Executive-Antibiotic-Research-UK.aspx (Accessed 29 April 2018).
Graham, K. (2016) ‘Three-drug cocktail could overcome antibiotic resistance’, Digital Journal [Online]. Available at www.digitaljournal.com/ life/ health/ three-drug-cocktail-could-overcome-antibiotic-resistance/ article/ 470747 (Accessed 29 April 2018).
Hover, B. M., Kim, S.-H., Katz, M., Charlop-Powers, Z., Owen, J. G., Ternei, M. A., Maniko, J., Estrela, A. B., Molina, H., Park, S., Perlin, D. S. and Brady, S. F. (2018) ‘Culture-independent discovery of the malacidins as calcium-dependent antibiotics with activity against multidrug-resistant Gram-positive pathogens’, Nature Microbiology, vol. 3, pp. 415–22 [Online]. Available at www.nature.com/ articles/ s41564-018-0110-1 (Accessed 29 April 2018).
de Lima Procopio, R. E., da Silva, I. R., Martins, M. K., de Azevedo, J. L. and de Araujo, J. M. (2012) ‘Antibiotics produced by Streptomyces’, Brazilian Journal of Infectious Diseases, vol. 16, no. 5, pp. 466–71 [Online]. Available at www.sciencedirect.com/ science/ article/ pii/ S1413867012001341#bbib0080 (Accessed 29 April 2018).
Ling, L. L., Schneider, T., Peoples, A. J., Spoering, A. L., Engles, I., Conlon, B. P., Mueller, A., Schaberle, T. F., Hughes, D. E., Epstein, S., Jones, M., Lazarides, L., Steadman, V. A., Cohen, D. R., Felix, C. R., Fetterman, K. A., Millett, W. P., Nitti, A. G., Zullo, A. M., Chen, C. and Lewis, K. (2015) ‘A new antibiotic kills pathogens without detectable resistance’, Nature, vol. 517, pp. 455–9 [Online]. Available at www.nature.com/ articles/ nature14098 (Accessed 29.April 2018).
Lo Grasso, L., Martino, D. C. and Alduina, R. (2016) ‘Production of antibacterial compounds from Actinomycetes’, in Dhanasekaran, D. (ed.) Actinobacteria [Online]. Available at www.intechopen.com/ books/ actinobacteria-basics-and-biotechnological-applications/ production-of-antibacterial-compounds-from-actinomycetes (Accessed 29 April 2018).
O’Neill, J. (2016) Tackling Drug-resistant Infections Globally: final report and recommendations [Online]. Available at https://amr-review.org/ sites/ default/ files/ 160525_Final%20paper_with%20cover.pdf (Accessed 11 January 2018).
Reygaert, W. C. (2011) ‘Ceftobiprole: an emerging therapeutic option for resistant and complicated infections’, Clinical Medicine Insights: Therapeutics, vol. 3, pp. 57–66 [Online]. Available at http://journals.sagepub.com/ doi/ pdf/ 10.4137/ CMT.S5032 (Accessed 29 April 2018).
Silver, L. (2011) ‘Challenges of antibacterial discovery’, Clinical Microbiology Reviews, vol. 24, no. 1, pp. 71–109 [Online]. Available at http://cmr.asm.org/ content/ 24/ 1/ 71.long#F1 (Accessed 29 April 2018).
The Pew Charitable Trust (2016) ‘A scientific roadmap for antibiotic discovery’, Antibiotic Resistance Project [Online]. Available at www.pewtrusts.org/ en/ research-and-analysis/ reports/ 2016/ 05/ a-scientific-roadmap-for-antibiotic-discovery (Accessed 29 April 2018).
University College London (UCL) (2017) ‘“Brute force” can overcome antibiotic resistance’, UCL News [Online]. Available at www.ucl.ac.uk/ news/ news-articles/ 0117/ 030217-brute-force-overcome-antibiotic-resistance (Accessed 29 April 2018).
University of East Anglia (UEA) (2016) Seven places that scientists are looking for new drugs [Online]. Available at www.uea.ac.uk/ about/ -/ seven-places-that-scientists-are-looking-for-new-drugs (Accessed 29 April 2018).
Wright, P. M., Seiple, I. B. and Myers, A. G. (2014) ‘The evolving role of chemical synthesis in antibacterial drug discovery’, Angewandte Chemie (International edition in English), vol. 53, no. 34, pp. 8840–69 [Online]. Available at www.ncbi.nlm.nih.gov/ pmc/ articles/ PMC4536949/ (Accessed 29 April 2018).
Week 7
Curtis, V., Schmidt, W., Luby, S., Florez, R., Toure, O. and Biran, A. (2011) ‘Hygiene: new hopes and new horizons’, The Lancet Infectious Diseases, vol. 11, no. 4, pp 312–21 [Online]. Available at www.thelancet.com/ journals/ laninf/ article/ PIIS1473-3099(10)70224-3/ fulltext (Accessed 16 February 2018).
Judah, G., Donachie, P., Cobb, E., Schmidt, W., Holland, M. and Curtis, V. (2010) ‘Dirty hands: bacteria of faecal origin on commuters’ hands’, Epidemiology and Infection, vol. 138, no. 3, pp. 409–14 [Online]. Available at www.cambridge.org/ core/ journals/ epidemiology-and-infection/ article/ dirty-hands-bacteria-of-faecal-origin-on-commuters-hands/ F2839868400191294EA5B38C2AE35340 (Accessed 16 February 2018).
Nordmann, P., Dortet, L. and Poirel, L. (2012) ‘Rapid detection of extended spectrum beta-lactamase producing Enterobacteriaceae’, Journal of Clinical Microbiology, vol. 50, no. 9, pp. 3016–22 [Online]. Available at http://jcm.asm.org/ content/ 50/ 9/ 3016.full (Accessed 24 February 2018).
O’Neill, J. (2016) Tackling Drug-resistant Infections Globally: final report and recommendations [Online]. Available at https://amr-review.org/ sites/ default/ files/ 160525_Final%20paper_with%20cover.pdf (Accessed 11 January 2018).
The Open University (2015) ‘1.4.2 Indirect person-to-person transmission’, SDK100 Science and health [Online]. Available at https://learn2.open.ac.uk/mod/oucontent/view.php?id=993001&section=1.4.2 (Accessed 6 February 2018).
Prospero, E., Barbadoro, P., Esposto, E., Manso, E., Martini, E., Savini, S., Scaccia, F., Tantucci, L., Pelaia, P. and D’Errico, M. (2010) ‘Extended-spectrum beta-lactamases Klebsiella pneumoniae: multimodal infection control program in Intensive Care Units,’ Journal of Preventive Medicine and Hygiene, vol. 51, no. 3, pp. 110–15 [Online]. Available at www.jpmh.org/ index.php/ jpmh/ article/ viewFile/ 223/ 205 (Accessed 22 February 2018).
World Health Organization (WHO) (2009) WHO guidelines on hand hygiene in healthcare [Online], Geneva, World Health Organization. Available at http://apps.who.int/ iris/ bitstream/ 10665/ 44102/ 1/ 9789241597906_eng.pdf (Accessed 22 February 2018).
WHO and UNICEF (2017) Progress on drinking water, sanitation and hygiene 2017. Update and SDG baselines [Online], Geneva, World Health Organization and United Nations Children’s Fund. Available at http://apps.who.int/ iris/ bitstream/ 10665/ 258617/ 1/ 9789241512893-eng.pdf?ua=1 (Accessed 19 January 2018).
Week 8
Alexander, J. W. (2009) ‘History of the medical use of silver’, Surgical Infections, vol. 10, no. 3, pp. 289–92 [Online]. Available at www.liebertpub.com/ doi/ abs/ 10.1089/ sur.2008.9941 (Accessed 9 March 2018).
Cox, D. (2017) ‘The “superantibiotics” that could save us from a bacterial apocalypse’, The Guardian, 23 October [Online]. Available at www.theguardian.com/ lifeandstyle/ 2017/ oct/ 23/ the-superantibiotics-that-could-save-us-from-bacteria-apocalypse (Accessed 9 March 2018).
Dustmann, J. H. (1979) ‘Antibacterial effect of honey’, Apiacta, vol. 14, pp. 7–11.
Keevil, B. (2017) ‘Copper is great at killing superbugs – so why don’t hospitals use it?’, The Conversation, 24 February [Online]. Available at https://theconversation.com/ copper-is-great-at-killing-superbugs-so-why-dont-hospitals-use-it-73103 (Accessed 9 March 2018).
O’Neill, J. (2016) ‘Tackling Drug-resistant Infections Globally: final report and recommendations’ [Online]. Available at https://amr-review.org/ sites/ default/ files/ 160525_Final%20paper_with%20cover.pdf (Accessed 11 January 2018).
Schmelcher, M., Donovan, D. M. and Loessner, M. J. (2012) ‘Bacteriophage endolysins as novel antimicrobials’, Future Microbiology, vol. 7, no. 10, pp. 1147–71 [Online]. Available at www.ncbi.nlm.nih.gov/ pmc/ articles/ PMC3563964/ (Accessed 8 March 2018).
Willis, A., Moore, C., Mazon-Moya, M., Krokowski, S., Lambert, C., Till, R., Mostowy, S. and Sockett, L. (2016) ‘Injections of predatory bacteria works alongside host immune cells to treat Shigella infection in zebrafish larvae’, Current Biology, vol. 26, no. 24, pp. 3343–51 [Online]. Available at www.cell.com/ current-biology/ fulltext/ S0960-9822(16)31152-6 (Accessed 8 March 2018).