Science, Maths & Technology
  • Video
  • 5 mins
  • Level 1: Introductory

Noble gases

Updated Tuesday 17th July 2007

Noble gases. Some balloons. A rooftop. Watch what happens...

Video

Copyright The Open University

Text version

Here are five of the six noble gases: helium, neon, argon, kypton and xeon. They're all colourless and transparent. Krypton and xeon form compounds only with difficulty. Helium, neon and argon don't form compounds at all.

As we descend the group in the periodic table the atomic number and relative atomic mass increases. The gasses get denser.

Helium - helium is lighter than air. Neon is just lighter. Argon and krypton - I've just got to unstick these from the anchorage... Argon and krypton are both heavier than air. And xeon, xeon is the heaviest of the lot, you've heard of a lead balloon, well this is it.

The science

The noble gases, in order of their density, are helium, neon, argon, krypton, xenon and radon. They are called noble gases because they are so majestic that, in general, they don’t react with anything. For this reason they are also known as inert gases.

The noble gases are present in the atmosphere in small amounts:

  • 0.934% Argon
  • 0.0018% Neon
  • 0.00052% Helium
  • 0.00011% Krypton
  • 0.000009% Xenon

Most of the noble gases are extracted from the air, except for helium. Helium is a product of radioactive decay (the alpha particle) and is found naturally in rocks. Most of the helium used nowadays comes from natural gas, of which it comprises 7%.

Helium, the lightest, is used for filling party balloons. It is also mixed with oxygen to create a mixture that divers can breathe at depth – the helium is not very soluble in the blood so it avoids the “bends”.

Neon is probably most famous for neon signs – a tube containing neon gas through which a current is passed which causes the gas to give out light. When mixed with helium it is used to make helium-neon lasers.

Argon is used as the inert atmosphere in many light bulbs – an electric current is passed through a wire to heat it up so that it gets so hot it emits light. At these temperatures the metal would react with any oxygen present which is why an inert gas is needed.

Krypton is used to produce white light for photography – again an electrical current is passed through the gas so it emits light.

Xenon is again used in high quality lamps such as those used in lighthouses and in lasers.

Radon is a radioactive element. Radon gas is formed by decay of other radioactive elements and the concentration in the environment depends upon the types of rocks on which you live. For example, the granite in Dartmoor contains small amounts of uranium that forms radon, which can accumulate in buildings and drinking water. This leads to an increased risk of cancer.

 

For further information, take a look at our frequently asked questions which may give you the support you need.

Have a question?

Other content you may like

Kitchen chaos: Just the facts Copyrighted image Icon Copyright: Used with permission article icon

Science, Maths & Technology 

Kitchen chaos: Just the facts

We show you how to turn your kitchen into a lab. If you would like a more visual experience, you can explore with our kitchen chaos interactive.

Article
What is polonium - and why is it so dangerous? Creative commons image Icon thierry ehrmann under Creative Commons BY 4.0 license article icon

Science, Maths & Technology 

What is polonium - and why is it so dangerous?

A report has been published today into the poisoning by polonium of Alexander Litvinenko. Writing at the time of another high-profile death in which the element was implicated, Martin Boland explains what polonium is, and what makes it deadly.

Article
Mike Bullivant's Med diary: First impressions Copyrighted image Icon Copyright: Production team video icon

Science, Maths & Technology 

Mike Bullivant's Med diary: First impressions

Mike Bullivant gives his first impressions of the scientists' new island home for Rough Science: Mediterranean.

Video
5 mins
Test kits for water analysis Copyrighted image Icon Copyright: Used with permission free course icon Level 2 icon

Science, Maths & Technology 

Test kits for water analysis

This free course, Test kits for water analysis, steps outside the laboratory to look at some examples of analytical procedures being carried out in the field using commercial test kits. These quick tests provide results on-site, extending the options available to analysts. The methods used are chemical or microbiological in nature, made portable by microelectronics.

Free course
12 hrs
Introduction to polymers Copyrighted image Icon Copyright: Used with permission free course icon Level 3 icon

Science, Maths & Technology 

Introduction to polymers

This free course, Introduction to polymers, examines the use of polymers and demonstrates how their properties are controlled by their molecular structure. You will learn how this structure determines which polymer to use for a particular product. You will also explore the manufacturing techniques used and the how the use of polymerisation can be used to control the structure of polymers.

Free course
20 hrs
Mike Bullivant's diary: Arrival Copyrighted image Icon Copyright: Production team article icon

Science, Maths & Technology 

Mike Bullivant's diary: Arrival

Mike Bullivant's diary of arriving as a castaway, from the BBC/OU series Rough Science 2

Article
Vegetable Oils Copyrighted image Icon Copyright: Production team article icon

Science, Maths & Technology 

Vegetable Oils

In the Rough Science programme ‘To the Lighthouse’, the Rough Scientists build a lighthouse, Ellen has the task of manufacturing the fuel for the lamps. Zanzibar is full of coconut trees and so an obvious source of oil is the coconut to make coconut oil. But it isn’t a simple task of just squeezing out the oil! To find out more about vegetable oils at molecular level and how one vegetable oil differs from one another and from animal fats, read the following extract from the second level OU course Our Chemical Environment (ST240).

Article
Chemical plants Copyrighted image Icon Copyright: Production team article icon

Science, Maths & Technology 

Chemical plants

Plants provide us with an enormous array of chemicals essential to industry and to our daily lives. But why are the chemicals there and why does the plant produce them?

Article
Brady’s Rogue Reagent? Creative commons image Icon Ccroberts at English Wikipedia under Creative Commons BY 4.0 license article icon

Science, Maths & Technology 

Brady’s Rogue Reagent?

Why are schools inviting the bomb squad to explode chemicals in their cupboards? The OU's Nick Power explains.

Article