Skip to content
Skip to main content

About this free course

Download this course

Share this free course

Basic science: understanding experiments
Basic science: understanding experiments

Start this free course now. Just create an account and sign in. Enrol and complete the course for a free statement of participation or digital badge if available.

1.4.1 What's in your graph?

Figure 7

You should now have completed this week’s experiment and should be ready to share your findings with your fellow learners. It is very likely that each of your experiments will have produced different results, but you may be able to find general patterns of agreement.

Activity 1.1 Experiment 1

Timing: Allow about 30 minutes

What was the water content of your potato? To work this out, you just need to subtract the weight of your potato at the end of your experiment from its starting weight. The difference in the starting and finishing weights is the actual weight of the water that was in your potato.

To compare your results with those of other learners easily, you can express your potato’s water content as a percentage. To do this, divide the weight of water in your potato by the potato’s starting weight and multiply the answer by 100. It is likely to come out to about 80%.

Post your results in the course forum thread for this activity [Tip: hold Ctrl and click a link to open it in a new tab. (Hide tip)]   and compare your findings with those posted by other learners. Discuss why you think any differences came about. Consider the variety of potato you used. Does it make a difference? Do waxy potatoes have a higher water content than floury ones? Maybe drying in a microwave is different from drying in a conventional oven?

It might be useful to provide an image of your graph. You can do this by photographing or scanning your graph and attaching the photograph file with your forum post.

Discussions with other people are crucial parts of the scientific process. It isn’t enough to obtain your results and then hide them away; they must be shared and discussed among your peers. Scientists usually do this by having their work critically examined by other scientists to see if it is ready for publication, then publishing their results in scientific journals, where anyone and everyone can examine them. If other people disagree with those results they can carry out research, obtain findings, and publish papers which argue a different case. This is why science produces such a robust body of knowledge. Other people are always trying to spot the flaws in your ideas, and if flaws are there, they are usually found pretty rapidly. A good scientist must always be ready to be corrected.