Skip to content
Skip to main content

About this free course

Download this course

Share this free course

Technology, innovation and management
Technology, innovation and management

Start this free course now. Just create an account and sign in. Enrol and complete the course for a free statement of participation or digital badge if available.

5.2 ‘Generations’ of innovation

Such is the perceived transformational power of technology that there has long been a tendency to uncritically accept such claims. One of the most significant outcomes is the widespread belief that there must be a technological ‘fix’ for almost any problem. Examples of this (sometimes with the caveat ‘if only we throw enough money at it’, or something similar) are many and varied, as Activity 4 should demonstrate. Consequently, we will only highlight one example, here, but one where the nature of the problem it may fix has changed over time.

GM (genetically modified) crops/foodstuffs have long been regarded as a technological fix to the real or potential problem of food shortages caused by population growth (by increasing crop yields and/or for use on land not previously considered fertile enough to grow crops). However, as climate change has become a more accepted and widely recognised issue so the potential use of GM crops as a technological fix for this problem has also developed. Consequently, it is argued that we can probably lessen or compensate for the impact of climate change through the development and use of GM crops that are able to withstand more extreme variations in temperature.

Activity 4

Drawing on your current or past professional experience, note down an example that you are familiar with of a technological fix to a problem/issue. Also note down the nature of the problem. Now think of a solution for this problem or issue that would not involve technology.

The same deterministic logic that underpins the claim that there is a technological fix to almost every problem is also evident in two of the most frequently cited and commonly discussed models of what ‘drives’ innovation: technology push and market pull. Also known as research-push and demand-pull, or first- and second-generation innovation (Rothwell, 1994), respectively, a simplistic interpretation of these terms is that technology push is represented by a technology searching for an application, and market pull as an industry response to observed market demand. As we shall see, several more explanations of the innovation process have been developed since the push and pull models appeared, but there are good reasons why these concepts emerged when they did and what they tell us about innovation at that time.