Skip to content
Skip to main content

About this free course

Download this course

Share this free course

John Napier
John Napier

Start this free course now. Just create an account and sign in. Enrol and complete the course for a free statement of participation or digital badge if available.

4 Napier and motion

So where did the idea of motion which is found in Napier’s work come from? It was again a concept used by Archimedes, in his study of spirals, so there was a classical precedent for propositions about points moving along lines (see, for example, Proposition 1 of On Spirals, in Reading 2 below). Further, although much of the Western mathematical tradition had been rather nervous of the concept of motion hitherto, there had been exceptions to this three centuries or so earlier: both the Merton School in fourteenth-century Oxford and Nicole Oresme at the University of Paris had made prolonged study of issues involving this concept. The details of Napier’s education are obscure – we know he spent a year at the University of St Andrews in his early teens, but not what he did or learned thereafter – but it is not implausible that he became aware of mediaeval studies of motion at some stage.

Reading 2: Proposition 1 of On Spirals

(b) Proposition 1

If a point move at a uniform rate along any line, and two lengths be taken on it, they will be proportional to the times of describing them.

Two unequal lengths are taken on a straight line, an two lengths on another straight line representing the times; and they are proved to be proportional by taking equimultiples of each length and the corresponding time after the manner of Euclid’s Elements, V, Def.5.