1. Explorer les fractions simples en groupes, avec des ressources simples

Dans cette section, vous allez introduire le concept des fractions. Essayez les tâches avec des groupes de taille différente - vous identifierez ainsi l’organisation la mieux adaptée à votre situation et à chaque tâche pratique. Pour avoir un complément d’information, consultez la Ressource clé : Travailler en groupe dans la classe [Astuce : maintenez la touche Ctrl enfoncée et cliquez sur un lien pour l’ouvrir dans un nouvel onglet (Masquer l’astuce)] .

Étude de cas 1 et Activité 1 utilisent des ressources simples – un fruit, du papier et des bandes de fractions pour aider les élèves à comprendre plus facilement le concept des fractions. Le travail en groupe et le fait de demander aux élèves de discuter leurs conclusions permettent de les exposer à différentes fractions. La compréhension des fractions fournit des bases pour réfléchir à la division (« partager en » parts égales est la première étape dans la compréhension de la division), aux quotients, aux proportions et aux chiffres décimaux.

Vous souhaiterez peut-être revoir vos propres connaissances des fractions en étudiant la Ressource 1 : Fractions.

Étude de cas 1 : Utiliser le travail en groupe pour explorer des fractions simples

M. Kolani au Togo commence sa leçon dans sa classe de cours moyen première année (5e année de primaire) en découpant une orange en deux parts égales puis en quatre parts égales, en demandant aux élèves de nommer les parts: moitiés puis quarts.

Il introduit des fractions simples, en illustrant chacune en pliant des rectangles de papier. Il souligne que deux moitiés forment un tout etc.

Il parle alors avec les élèves de la manière dont les choses sont partagées dans la vie réelle. Comme sa classe est chargée, il la divise en petits groupes de trois. Il dessine un cercle, un rectangle et un carré au tableau et demande à chaque élève de choisir une forme et de la dessiner six fois. Il demande aux élèves de hachurer leurs dessins pour indiquer

  • une moitié
  • deux moitiés
  • un quart
  • deux quarts
  • trois quarts
  • quatre quarts

Chaque élève du groupe montre alors aux autres ce qu’il a fait. M. Kolani leur demande s’ils voient des structures dans leurs dessins et certains élèves déclarent que deux quarts est la même chose qu'une moitié etc. Ils partagent ces informations avec les autres membres de leur groupe et avec la classe.

La classe de M. Kolani était chargée mais il s’est aperçu que sa technique de travail en groupes permettait à tous les élèves de comprendre les bases des fractions équivalentes à partir de leurs dessins et de l’interaction avec les autres élèves. Il a également conclu que les élèves étaient bien préparés pour la leçon suivante.

Activité 1 : Utilisation des bandes de fractions

Répartissez les élèves en groupes de quatre. Distribuez aux groupes quatre bandes de papier de même longueur (voir la Ressource 2 : Bandes de fractions). Dans chaque groupe, demandez à un élève de plier une bande en deux parties égales ; un autre élève doit plier une bande en 4 et un autre en 8. Un élève du groupe ne doit pas plier sa bande.

En utilisant les bandes, les élèves doivent répondre à ces questions:

  • Combien de moitiés (1/2) font un tout  ?
  • Combien de quarts (1/4) font une moitié (1/2)  ?
  • Combien de huitièmes (1/8) font un quart (1/4)  ?

Vous pouvez alors leur demander d’essayer des fractions équivalentes plus difficiles, par exemple :

  • Combien de huitièmes (1/8) y a-t-il dans une moitié (1/2)  ?
  • Combien de huitièmes (1/8) y a-t-il dans trois quarts (3/4)  ?

Pendant que les élèves travaillent, circulez pour les aider. Partagez certaines des réponses avec la classe pour montrer comment fonctionnent les fractions.

Section numéro 5 : Travail pratique avec les fractions

2. Utiliser des bandes et des cercles de fractions pour faire des additions et soustractions de fractions