गणितीय तर्क शक्ति का विकास करना : गणितीय प्रमाण
यह इकाई किस बारे में है
गणितीय प्रमाण को अक्सर गणित का एक महत्वपूर्ण आधार माना जाता है। व्यावसायिक गणितज्ञ विकासशील अनुमान लगाते हैं फिर उसपर कार्य करते हैं कि क्या वे अनुमान सभी स्थितियों में लागू होते हैं, कुछ स्थितियों में लागू हैं या किसी भी स्थिति में लागू नहीं हैं। इसपर वे बहुत समय बिताते हैं। प्रमाण और औचित्य परिशुद्ध होने चाहिए और ज्ञात गणितीय तथ्यों और गुणो पर आधारित होने चाहिए। प्रमाणित करने की यह प्रक्रिया गणित की समझ और ज्ञान की जाँच के बीच की जाती है, और गणितीय विचारों और अवधारणाओं के बीच संबंध स्थापित किए जाते हैं।
गणित की समझ विकसित करने के लिए कक्षाओं में प्रमाणित करने की प्रक्रिया भी एक अच्छी गतिविधि हो सकती है। इससे विद्यार्थी गतिविधियों में व्यस्त रहते हैं और यह वास्तविक गणितज्ञों के द्वारा की गयी गतिविधि है। परन्तु विद्यालयों में अक्सर विद्यार्थी यह समझते हैं कि गणित में प्रमाणित करने की प्रक्रिया को रटकर याद किया जाता और सीखा जाता है। यह विधि केवल इस बात पर जोर देती है कि गणित तथ्यों और प्रक्रियाओं को कंठस्थ करने के बारे मे है, जबकि प्रमाण की अवधारणा का उद्देश्य अक्सर स्पष्ट नहीं किया जाता।
इस इकाई में आप गणितीय प्रमाण के बारे में तथा इस बारे में सोचेंगे कि किस प्रकार इसका उपयोग अपने विद्यार्थियों की गणितीय समझ को और बेहतर बनाने में किया जा सकता है। आप सीखेंगे कि अपने विद्यार्थियों को मौखिक विवेक बोध में और बेहतर बनने में मदद कैसे करें और वे चर्चाओं से प्रभावी रूप से कैसे सीख सकते हैं।